Robust Heterogeneous Federated Learning under Data Corruption

被引:10
|
作者
Fang, Xiuwen [1 ]
Ye, Mang [1 ]
Yang, Xiyuan [1 ]
机构
[1] Wuhan Univ, Natl Engn Res Ctr Multimedia Software, Hubei Key Lab Multimedia & Network Commun Engn, Inst Artificial Intelligence,Sch Comp Sci,Hubei L, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1109/ICCV51070.2023.00463
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Model heterogeneous federated learning is a realistic and challenging problem. However, due to the limitations of data collection, storage, and transmission conditions, as well as the existence of free-rider participants, the clients may suffer from data corruption. This paper starts the first attempt to investigate the problem of data corruption in the model heterogeneous federated learning framework. We design a novel method named Augmented Heterogeneous Federated Learning (AugHFL), which consists of two stages: 1) In the local update stage, a corruption-robust data augmentation strategy is adopted to minimize the adverse effects of local corruption while enabling the models to learn rich local knowledge. 2) In the collaborative update stage, we design a robust re-weighted communication approach, which implements communication between heterogeneous models while mitigating corrupted knowledge transfer from others. Extensive experiments demonstrate the effectiveness of our method in coping with various corruption patterns in the model heterogeneous federated learning setting.
引用
收藏
页码:4997 / 5007
页数:11
相关论文
共 50 条
  • [31] FedIR: Learning Invariant Representations from Heterogeneous Data in Federated Learning
    Zheng, Xi
    Xie, Hongcheng
    Guo, Yu
    Bie, Rongfang
    2023 19TH INTERNATIONAL CONFERENCE ON MOBILITY, SENSING AND NETWORKING, MSN 2023, 2023, : 644 - 651
  • [32] Learning Efficiency Maximization for Wireless Federated Learning With Heterogeneous Data and Clients
    Ouyang, Jinhao
    Liu, Yuan
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2024, 10 (06) : 2282 - 2295
  • [33] Adaptive Clustered Federated Learning for Heterogeneous Data in Edge Computing
    Biyao Gong
    Tianzhang Xing
    Zhidan Liu
    Junfeng Wang
    Xiuya Liu
    Mobile Networks and Applications, 2022, 27 : 1520 - 1530
  • [34] Federated variational generative learning for heterogeneous data in distributed environments
    Xie, Wei
    Xiong, Runqun
    Zhang, Jinghui
    Jin, Jiahui
    Luo, Junzhou
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2024, 191
  • [35] A Remedy for Heterogeneous Data: Clustered Federated Learning with Gradient Trajectory
    Liu, Ruiqi
    Yu, Songcan
    Lan, Linsi
    Wang, Junbo
    Kant, Krishna
    Calleja, Neville
    BIG DATA MINING AND ANALYTICS, 2024, 7 (04): : 1050 - 1064
  • [36] Evaluating and Enhancing the Robustness of Federated Learning System against Realistic Data Corruption
    Yang, Chen
    Li, Yuanchun
    Lu, Hao
    Yuan, Jinliang
    Sun, Qibo
    Wang, Shangguang
    Xu, Mengwei
    2023 IEEE 34TH INTERNATIONAL SYMPOSIUM ON SOFTWARE RELIABILITY ENGINEERING, ISSRE, 2023, : 462 - 473
  • [37] Over-the-Air Federated Learning from Heterogeneous Data
    Sery, Tomer
    Shlezinger, Nir
    Cohen, Kobi
    Eldar, Yonina
    IEEE Transactions on Signal Processing, 2021, 69 : 3796 - 3811
  • [38] FedMatch: Federated Learning Over Heterogeneous Question Answering Data
    Chen, Jiangui
    Zhang, Ruqing
    Guo, Jiafeng
    Fan, Yixing
    Cheng, Xueqi
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 181 - 190
  • [39] Understanding and Improving Model Averaging in Federated Learning on Heterogeneous Data
    Zhou, Tailin
    Lin, Zehong
    Zhang, Jun
    Tsang, Danny H. K.
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (12) : 12131 - 12145
  • [40] Data-Free Knowledge Distillation for Heterogeneous Federated Learning
    Zhu, Zhuangdi
    Hong, Junyuan
    Zhou, Jiayu
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139