On the A-spectrum for A-bounded operators on von-Neumann algebras

被引:0
|
作者
Baklouti, H. [1 ]
Difaoui, K. [1 ]
Mabrouk, M. [1 ]
机构
[1] Univ Sfax, Fac Sci Sfax, Dept Math, Sfax, Tunisia
关键词
C*-algebra; Von Neumann algebra; Positive operator; Spectrum; RANGE; ELEMENTS;
D O I
10.1007/s43036-024-00362-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a von Neumann algebra. For a nonzero positive element A is an element of M, let P denote the orthogonal projection on the norm closure of the range of A and let sigma(A)(T) denote the A-spectrum of any T is an element of M-A. In this paper, we show that sigma(A)(T) is a non empty compact subset of C and that sigma(PTP, PMP) subset of sigma(A)(T) for any T is an element of M-A where sigma(PT P, PMP) is the spectrum of PT P in PMP. Sufficient conditions for the equality sigma(A)(T) = sigma(PTP, PMP) to be true are also presented. Moreover, we show that sigma(A)(T) is finite for any T is an element of M-A if and only if A is in the socle of M. Furthermore, we consider the relationship between elements S and T is an element of M-A that satisfy the condition sigma(A)(SX) = sigma(A)(T X) for all X is an element of M-A. Finally, a Gleason-Kahane-Zelazko's theorem for the A-spectrum is derived.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Hybrid Dataflow/von-Neumann Architectures
    Yazdanpanah, Fahimeh
    Alvarez-Martinez, Carlos
    Jimenez-Gonzalez, Daniel
    Etsion, Yoav
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2014, 25 (06) : 1489 - 1509
  • [32] VON-NEUMANN,JOHN - MACRAE,N
    STEWART, AB
    ANTIOCH REVIEW, 1993, 51 (02): : 302 - 302
  • [33] VON-NEUMANN,JOHN - MACRAE,N
    CARSON, CL
    REVIEWS IN AMERICAN HISTORY, 1993, 21 (03) : 514 - 519
  • [34] Callias-Type Operators in von Neumann Algebras
    Braverman, Maxim
    Cecchini, Simone
    JOURNAL OF GEOMETRIC ANALYSIS, 2018, 28 (01) : 546 - 586
  • [35] Callias-Type Operators in von Neumann Algebras
    Maxim Braverman
    Simone Cecchini
    The Journal of Geometric Analysis, 2018, 28 : 546 - 586
  • [36] Inequalities for positive module operators on von Neumann algebras
    Choi, Byoung Jin
    Ji, Un Cig
    Lim, Yongdo
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (06)
  • [37] *-Algebras of unbounded operators affiliated with a von Neumann algebra
    Muratov M.A.
    Chilin V.I.
    Journal of Mathematical Sciences, 2007, 140 (3) : 445 - 451
  • [38] Unitary orbits of normal operators in von Neumann algebras
    Sherman, David
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 605 : 95 - 132
  • [39] Normal Limits of Nilpotent Operators in von Neumann Algebras
    Paul Skoufranis
    Integral Equations and Operator Theory, 2013, 77 : 407 - 439
  • [40] A REDUCTION THEORY FOR OPERATORS IN TYPE IN VON NEUMANN ALGEBRAS
    Shi, Rui
    HOUSTON JOURNAL OF MATHEMATICS, 2014, 40 (04): : 1183 - 1224