Jointprop: Joint Semi-supervised Learning for Entity and Relation Extraction with Heterogeneous Graph-based Propagation

被引:0
|
作者
Zheng Yandan [1 ,2 ]
Anran, Hao [1 ]
Tuan, Luu Anh [1 ]
机构
[1] Sch Comp Sci & Engn, Singapore, Singapore
[2] Nanyang Technol Univ, Interdisciplinary Grad Program HealthTech, Singapore, Singapore
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Semi-supervised learning has been an important approach to address challenges in extracting entities and relations from limited data. However, current semi-supervised works handle the two tasks (i.e., Named Entity Recognition and Relation Extraction) separately and ignore the cross-correlation of entity and relation instances as well as the existence of similar instances across unlabeled data. To alleviate the issues, we propose Jointprop, a Heterogeneous Graph-based Propagation framework for joint semi-supervised entity and relation extraction, which captures the global structure information between individual tasks and exploits interactions within unlabeled data. Specifically, we construct a unified span-based heterogeneous graph from entity and relation candidates and propagate class labels based on confidence scores. We then employ a propagation learning scheme to leverage the affinities between labelled and unlabeled samples. Experiments on benchmark datasets show that our framework outperforms the state-of-the-art semi-supervised approaches on NER and RE tasks. We show that the joint semi-supervised learning of the two tasks benefits from their codependency and validates the importance of utilizing the shared information between unlabeled data.
引用
收藏
页码:14541 / 14555
页数:15
相关论文
共 50 条
  • [31] Graph-Based Semi-supervised Learning for Phone and Segment Classification
    Liu, Yuzong
    Kirchhoff, Katrin
    14TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2013), VOLS 1-5, 2013, : 1839 - 1842
  • [32] Interpretable Graph-Based Semi-Supervised Learning via Flows
    Rustamov, Raif M.
    Klosowski, James T.
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 3976 - 3983
  • [34] Graph-based semi-supervised learning and spectral kernel design
    Johnson, Ric
    Zhang, Tong
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (01) : 275 - 288
  • [35] VIDEO FACE RECOGNITION WITH GRAPH-BASED SEMI-SUPERVISED LEARNING
    Kokiopoulou, Effrosyni
    Frossard, Pascal
    ICME: 2009 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-3, 2009, : 1564 - +
  • [36] Spectral Graph-Based Semi-supervised Learning for Imbalanced Classes
    Zheng, Q.
    Skillicorn, D. B.
    PROCEEDINGS OF THE 2016 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING ASONAM 2016, 2016, : 960 - 967
  • [37] SOME NEW DIRECTIONS IN GRAPH-BASED SEMI-SUPERVISED LEARNING
    Zhu, Xiaojin
    Goldberg, Andrew B.
    Khot, Tushar
    ICME: 2009 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-3, 2009, : 1504 - 1507
  • [38] A Flexible Generative Framework for Graph-based Semi-supervised Learning
    Ma, Jiaqi
    Tang, Weijing
    Zhu, Ji
    Mei, Qiaozhu
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [39] Time Series Analysis with Graph-based Semi-Supervised Learning
    Xu, Zhao
    Funaya, Koichi
    PROCEEDINGS OF THE 2015 IEEE INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (IEEE DSAA 2015), 2015, : 1100 - 1105
  • [40] Safety-aware Graph-based Semi-Supervised Learning
    Gan, Haitao
    Li, Zhenhua
    Wu, Wei
    Luo, Zhizeng
    Huang, Rui
    EXPERT SYSTEMS WITH APPLICATIONS, 2018, 107 : 243 - 254