38.7 GHz Thin Film Lithium Niobate Acoustic Filter

被引:1
|
作者
Barrera, Omar [1 ]
Cho, Sinwoo [1 ]
Kramer, Jack [1 ]
Chulukhadze, Vakhtang [1 ]
Campbell, Joshua [1 ]
Lu, Ruochen [1 ]
机构
[1] Univ Texas Austin, Austin, TX 78712 USA
关键词
acoustic filters; lithium niobate; millimeter-wave; piezoelectric devices; thin-film devices; 5G FR2;
D O I
10.1109/IMFW59690.2024.10477121
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work, a 38.7 GHz acoustic wave ladder filter exhibiting insertion loss (IL) of 5.63 dB and 3-dB fractional bandwidth (FBW) of 17.6% is demonstrated, pushing the frequency limits of thin-film piezoelectric acoustic filter technology. The filter achieves operating frequency up to 5G millimeter wave (mmWave) frequency range 2 (FR2) bands, by thinning thin-film LiNbO3 resonators to sub-50 nm thickness. The high electromechanical coupling (k(2)) and quality factor (Q) of first-order antisymmetric (A1) mode resonators in 128 degrees Y-cut lithium niobate (LiNbO3) collectively enable the first acoustic filters at mmWave. The key design consideration of electromagnetic (EM) resonances in interdigitated transducers (IDT) is addressed and mitigated. These results indicate that thin-film piezoelectric resonators could be pushed to 5G FR2 bands. Further performance enhancement and frequency scaling calls for better resonator technologies and EM-acoustic filter co-design.
引用
收藏
页码:87 / 90
页数:4
相关论文
共 50 条
  • [41] Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators
    Shao, Linbo
    Yu, Mengjie
    Maity, Smarak
    Sinclair, Neil
    Zheng, Lu
    Chia, Cleaven
    Shams-Ansari, Amirhassan
    Wang, Cheng
    Zhang, Mian
    Lai, Keji
    Loncar, Marko
    OPTICA, 2019, 6 (12): : 1498 - 1505
  • [42] Investigation of acoustic waves in thin plates of lithium niobate and lithium tantalate
    Kuznetsova, IE
    Zaitsev, BD
    Joshi, SG
    Borodina, IA
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2001, 48 (01) : 322 - 328
  • [43] Acoustic Wave Filter Based on Periodically Poled Lithium Niobate
    Courjon, Emilie
    Bassignot, Florent
    Ulliac, Gwenn
    Benchabane, Sarah
    Ballandras, Sylvain
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2012, 59 (09) : 1942 - 1949
  • [44] Acoustic Wave Filter Based on Periodically Poled Lithium Niobate
    Courjon, E.
    Bassignot, F.
    Ulliac, G.
    Ballandras, S.
    2011 INTERNATIONAL SYMPOSIUM ON APPLICATIONS OF FERROELECTRICS (ISAF/PFM) AND 2011 INTERNATIONAL SYMPOSIUM ON PIEZORESPONSE FORCE MICROSCOPY AND NANOSCALE PHENOMENA IN POLAR MATERIALS, 2011,
  • [45] Monolithic thin film lithium niobate electro-optic modulator with over 110 GHz bandwidth
    杨帆
    方先松
    陈心羽
    朱立新
    张帆
    陈章渊
    李艳萍
    ChineseOpticsLetters, 2022, 20 (02) : 153 - 157
  • [46] Monolithic thin film lithium niobate electro-optic modulator with over 110 GHz bandwidth
    Yang, Fan
    Fang, Xiansong
    Chen, Xinyu
    Zhu, Lixin
    Zhang, Fan
    Chen, Zhangyuan
    Li, Yanping
    CHINESE OPTICS LETTERS, 2022, 20 (02)
  • [47] A Trident Edge Coupler for Lithium Niobate Thin Film
    Yu, Qian chen
    Liang, Xue Rui
    Ma, Wei Dong
    SIXTH SYMPOSIUM ON NOVEL OPTOELECTRONIC DETECTION TECHNOLOGY AND APPLICATIONS, 2020, 11455
  • [48] Lithium niobate thin films on diamond/silicon substrates for surface acoustic wave filter device applications
    Rabson, TA
    Lee, JT
    Lee, TC
    Wang, SX
    Robert, MA
    INTEGRATED FERROELECTRICS, 2001, 41 (1-4) : 1733 - 1742
  • [49] Thin film lithium niobate on sapphire for SAW applications
    Ho, KS
    Lin, J
    Chen, J
    Rabson, TA
    INTEGRATED FERROELECTRICS, 1995, 11 (1-4) : 201 - 211
  • [50] Integrated photonics on thin-film lithium niobate
    Zhu, Di
    Shao, Linbo
    Yu, Mengjie
    Cheng, Rebecca
    Desiatov, Boris
    Xin, C. J.
    Hu, Yaowen
    Holzgrafe, Jeffrey
    Ghosh, Soumya
    Shams-Ansari, Amirhassan
    Puma, Eric
    Sinclair, Neil
    Reimer, Christian
    Zhang, Mian
    Loncar, Marko
    ADVANCES IN OPTICS AND PHOTONICS, 2021, 13 (02): : 242 - 352