A Constructive Method for Data Reduction and Imbalanced Sampling

被引:0
|
作者
Liu, Fei [1 ]
Yan, Yuanting [1 ]
机构
[1] Anhui Univ, Artificial Intelligence Inst, Sch Comp Sci & Technol, Hefei 230601, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
constructive covering algorithm; data reduction; undersampling; class imbalance; INSTANCE SELECTION; CLASSIFICATION;
D O I
10.1007/978-981-97-0798-0_28
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A large number of training data lead to high computational cost in instanced-based classification. Currently, one of the mainstream methods to reduce data size is to select a representative subset of samples based on spatial partitioning. However, how to select a representative subset while maintaining the overall potential distribution structure of the dataset remains a challenge. Therefore, this paper proposes a constructive data reduction method called Constructive Covering Sampling (CCS) for classification problems. The CCS does not rely on any relevant parameters. It iteratively partitions the original data space into a group of data subspaces, which contains several samples of the same class, and then it selects representative samples from the data subspaces. This not only maintains the original data distribution structure and reduces data size but also reduces problem complexity and improves the learning efficiency of the classifier. Furthermore, CCS can also be extended as an effective undersampling method (CCUS) to address class imbalance issues. Experiments on 18 KEEL and UCI datasets demonstrate that the proposed method outperforms other sampling methods in terms of F-measure, G-mean, AUC and Accuracy.
引用
收藏
页码:476 / 489
页数:14
相关论文
共 50 条
  • [11] HSDP: A Hybrid Sampling Method for Imbalanced Big Data Based on Data Partition
    Chen, Liping
    Jiang, Jiabao
    Zhang, Yong
    COMPLEXITY, 2021, 2021
  • [12] Imbalanced Data Over-Sampling Method Based on ISODATA Clustering
    Lv, Zhenzhe
    Liu, Qicheng
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2023, E106D (09) : 1528 - 1536
  • [13] An Effective Over-sampling Method for Imbalanced Data Sets Classification
    Zhai Yun
    Ma Nan
    Ruan Da
    An Bing
    CHINESE JOURNAL OF ELECTRONICS, 2011, 20 (03): : 489 - 494
  • [14] HSDLM: A Hybrid Sampling With Deep Learning Method for Imbalanced Data Classification
    Hasib, Khan Md
    Towhid, Nurul Akter
    Islam, Md Rafiqul
    INTERNATIONAL JOURNAL OF CLOUD APPLICATIONS AND COMPUTING, 2021, 11 (04) : 1 - 13
  • [15] Under-sampling method based on sample weight for imbalanced data
    Xiong B.
    Wang G.
    Deng W.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2016, 53 (11): : 2613 - 2622
  • [16] Over-Sampling Method on Imbalanced Data Based on WKMeans and SMOTE
    Chen, Junfeng
    Zheng, Zhongtuan
    Computer Engineering and Applications, 2024, 57 (23) : 106 - 112
  • [17] A Hybrid Under-Sampling Method (HUSBoost) to Classify Imbalanced Data
    Popel, Mahmudul Hasan
    Hasib, Khan Md
    Habib, Syed Ahsan
    Shah, Faisal Muhammad
    2018 21ST INTERNATIONAL CONFERENCE OF COMPUTER AND INFORMATION TECHNOLOGY (ICCIT), 2018,
  • [18] Neighbourhood sampling in bagging for imbalanced data
    Blaszczynski, Jerzy
    Stefanowski, Jerzy
    NEUROCOMPUTING, 2015, 150 : 529 - 542
  • [19] Noise Reduction A Priori Synthetic Over-Sampling for class imbalanced data sets
    Rivera, William A.
    INFORMATION SCIENCES, 2017, 408 : 146 - 161
  • [20] AN IMBALANCED DATA CLASSIFICATION METHOD BASED ON AUTOMATIC CLUSTERING UNDER-SAMPLING
    Deng, Xiaoheng
    Zhong, Weijian
    Ren, Ju
    Zeng, Detian
    Zhang, Honggang
    2016 IEEE 35TH INTERNATIONAL PERFORMANCE COMPUTING AND COMMUNICATIONS CONFERENCE (IPCCC), 2016,