Generation-based Multi-view Contrast for Self-supervised Graph Representation Learning

被引:0
|
作者
Han, Yuehui [1 ]
机构
[1] Nanjing Univ Sci & Technol, Xiaolingwei St, Nanjing 210000, Jiangsu, Peoples R China
关键词
Graph representation learning; contrastive learning; multi-view generation;
D O I
10.1145/3645095
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Graph contrastive learning has made remarkable achievements in the self-supervised representation learning of graph-structured data. By employing perturbation function (i.e., perturbation on the nodes or edges of graph), most graph contrastive learning methods construct contrastive samples on the original graph. However, the perturbation-based data augmentation methods randomly change the inherent information (e.g., attributes or structures) of the graph. Therefore, after nodes embedding on the perturbed graph, we cannot guarantee the validity of the contrastive samples as well as the learned performance of graph contrastive learning. To this end, in this article, we propose a novel generation-based multi-view contrastive learning framework (GMVC) for self-supervised graph representation learning, which generates the contrastive samples based on our generator rather than perturbation function. Specifically, after nodes embedding on the original graphwe first employ random walk in the neighborhood to developmultiple relevant node sequences for each anchor node. We then utilize the transformer to generate the representations of relevant contrastive samples of anchor node based on the features and structures of the sampled node sequences. Finally, by maximizing the consistency between the anchor view and the generated views, we force the model to effectively encode graph information into nodes embeddings. We perform extensive experiments of node classification and link prediction tasks on eight benchmark datasets, which verify the effectiveness of our generation-based multi-view graph contrastive learning method.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] MSGCL: inferring miRNA-disease associations based on multi-view self-supervised graph structure contrastive learning
    Ruan, Xinru
    Jiang, Changzhi
    Lin, Peixuan
    Lin, Yuan
    Liu, Juan
    Huang, Shaohui
    Liu, Xiangrong
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (02)
  • [32] CLEAR: Cluster-Enhanced Contrast for Self-Supervised Graph Representation Learning
    Luo, Xiao
    Ju, Wei
    Qu, Meng
    Gu, Yiyang
    Chen, Chong
    Deng, Minghua
    Hua, Xian-Sheng
    Zhang, Ming
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (01) : 899 - 912
  • [33] Self-Supervised Dynamic Graph Representation Learning via Temporal Subgraph Contrast
    Chen, Ke-Jia
    Liu, Linsong
    Jiang, Linpu
    Chen, Jingqiang
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2024, 18 (01)
  • [34] Cross-View Masked Model for Self-Supervised Graph Representation Learning
    Duan H.
    Yu B.
    Xie C.
    IEEE Transactions on Artificial Intelligence, 2024, 5 (11): : 1 - 13
  • [35] Self-Supervised Deep Multi-View Subspace Clustering
    Sun, Xiukun
    Cheng, Miaomiao
    Min, Chen
    Jing, Liping
    ASIAN CONFERENCE ON MACHINE LEARNING, VOL 101, 2019, 101 : 1001 - 1016
  • [36] Digging into Uncertainty in Self-supervised Multi-view Stereo
    Xu, Hongbin
    Zhou, Zhipeng
    Wang, Yali
    Kang, Wenxiong
    Sun, Baigui
    Li, Hao
    Qiao, Yu
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 6058 - 6067
  • [37] Self-supervised Deep Correlational Multi-view Clustering
    Xin, Bowen
    Zeng, Shan
    Wang, Xiuying
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [38] GoMIC: Multi-view image clustering via self-supervised contrastive heterogeneous graph co-learning
    Fang, Uno
    Li, Jianxin
    Akhtar, Naveed
    Li, Man
    Jia, Yan
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2023, 26 (04): : 1667 - 1683
  • [39] GoMIC: Multi-view image clustering via self-supervised contrastive heterogeneous graph co-learning
    Uno Fang
    Jianxin Li
    Naveed Akhtar
    Man Li
    Yan Jia
    World Wide Web, 2023, 26 : 1667 - 1683
  • [40] Self-supervised Metric Learning in Multi-View Data: A Downstream Task Perspective
    Wang, Shulei
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023, 118 (544) : 2454 - 2467