Cavity Floquet engineering

被引:1
|
作者
Zhou, Lingxiao [1 ]
Liu, Bin [2 ]
Liu, Yuze [2 ]
Lu, Yang [2 ]
Li, Qiuyang [1 ]
Xie, Xin [1 ]
Lydick, Nathanial [1 ]
Hao, Ruofan [3 ]
Liu, Chenxi [4 ]
Watanabe, Kenji [5 ]
Taniguchi, Takashi [6 ]
Chou, Yu-Hsun [7 ,8 ]
Forrest, Stephen R. [1 ,2 ]
Deng, Hui [1 ,2 ,3 ]
机构
[1] Univ Michigan, Dept Phys, 450 Church St, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Elect Engn & Comp Sci, 1301 Beal Ave, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Appl Phys Program, 450 Church St, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Nucl Engn & Radiol Sci, 2355 Bonisteel Blvd, Ann Arbor, MI 48109 USA
[5] Natl Inst Mat Sci, Res Ctr Elect & Opt Mat, 1-1 Namiki, Tsukuba 3050044, Japan
[6] Natl Inst Mat Sci, Res Ctr Mat Nanoarchitecton, 1-1 Namiki, Tsukuba 3050044, Japan
[7] Natl Cheng Kung Univ, Dept Photon, Tainan, Taiwan
[8] Natl Cheng Kung Univ, Acad Innovat Semicond & Sustainable Mfg, Tainan, Taiwan
基金
美国国家科学基金会;
关键词
QUANTUM; ATOMS; EXCITONS; SPIN; WS2;
D O I
10.1038/s41467-024-52014-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Floquet engineering is a promising tool to manipulate quantum systems coherently. A well-known example is the optical Stark effect, which has been used for optical trapping of atoms and breaking time-reversal symmetry in solids. However, as a coherent nonlinear optical effect, Floquet engineering typically requires high field intensities obtained in ultrafast pulses, severely limiting its use. Here, we demonstrate using cavity engineering of the vacuum modes to achieve orders-of-magnitude enhancement of the effective Floquet field, enabling Floquet effects at an extremely low fluence of 450 photons/mu m2. At higher fluences, the cavity-enhanced Floquet effects lead to 50 meV spin and valley splitting of WSe2 excitons, corresponding to an enormous time-reversal breaking, non-Maxwellian magnetic field of over 200 T. Utilizing such an optically controlled effective magnetic field, we demonstrate an ultrafast, picojoule chirality XOR gate. These results suggest that cavity-enhanced Floquet engineering may enable the creation of steady-state or quasi-equilibrium Floquet bands, strongly non-perturbative modifications of materials beyond the reach of other means, and application of Floquet engineering to a wide range of materials and applications. The authors demonstrate enhancement by nearly two-orders of magnitude of the optical Stark effect in WSe2 embedded into a Fabry Perot cavity, and use this mechanism to obtain an effective magnetic field of over 200 T and implement a XOR switch.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Floquet engineering of Kitaev quantum magnets
    Kumar, Umesh
    Banerjee, Saikat
    Lin, Shi-Zeng
    COMMUNICATIONS PHYSICS, 2022, 5 (01)
  • [22] Floquet engineering of Kitaev quantum magnets
    Umesh Kumar
    Saikat Banerjee
    Shi-Zeng Lin
    Communications Physics, 5
  • [23] Floquet Engineering Topological Dirac Bands
    Lu, Mingwu
    Reid, G. H.
    Fritsch, A. R.
    Pineiro, A. M.
    Spielman, I. B.
    PHYSICAL REVIEW LETTERS, 2022, 129 (04)
  • [24] Tailoring quantum gases by Floquet engineering
    Christof Weitenberg
    Juliette Simonet
    Nature Physics, 2021, 17 : 1342 - 1348
  • [25] Floquet engineering multichannel Kondo physics
    Quito, Victor L.
    Flint, R.
    PHYSICAL REVIEW B, 2023, 108 (15)
  • [26] Floquet Engineering a Bosonic Josephson Junction
    Ji, Si-Cong
    Schweigler, Thomas
    Tajik, Mohammadamin
    Cataldini, Federica
    Sabino, Joao
    Moller, Frederik S.
    Erne, Sebastian
    Schmiedmayer, Jorg
    PHYSICAL REVIEW LETTERS, 2022, 129 (08)
  • [27] Multichromatic Floquet engineering of quantum dissipation
    Impens, Francois
    Guery-Odelin, David
    PHYSICAL REVIEW A, 2024, 109 (06)
  • [28] Theory of Floquet-driven dissipative cavity magnonics
    Yang, Ying
    Xiao, Yang
    Hu, C. -M.
    PHYSICAL REVIEW B, 2023, 107 (05)
  • [29] Nonreciprocal Transport Based on Cavity Floquet Modes in Optomechanics
    de Lepinay, Laure Mercier
    Ockeloen-Korppi, Caspar F.
    Malz, Daniel
    Sillanpaa, Mika A.
    PHYSICAL REVIEW LETTERS, 2020, 125 (02)
  • [30] Nonadiabatic dynamics near metal surfaces under Floquet engineering: Floquet electronic friction vs Floquet surface hopping
    Wang, Yu
    Dou, Wenjie
    JOURNAL OF CHEMICAL PHYSICS, 2023, 159 (09):