Cavity Floquet engineering

被引:1
|
作者
Zhou, Lingxiao [1 ]
Liu, Bin [2 ]
Liu, Yuze [2 ]
Lu, Yang [2 ]
Li, Qiuyang [1 ]
Xie, Xin [1 ]
Lydick, Nathanial [1 ]
Hao, Ruofan [3 ]
Liu, Chenxi [4 ]
Watanabe, Kenji [5 ]
Taniguchi, Takashi [6 ]
Chou, Yu-Hsun [7 ,8 ]
Forrest, Stephen R. [1 ,2 ]
Deng, Hui [1 ,2 ,3 ]
机构
[1] Univ Michigan, Dept Phys, 450 Church St, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Elect Engn & Comp Sci, 1301 Beal Ave, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Appl Phys Program, 450 Church St, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Nucl Engn & Radiol Sci, 2355 Bonisteel Blvd, Ann Arbor, MI 48109 USA
[5] Natl Inst Mat Sci, Res Ctr Elect & Opt Mat, 1-1 Namiki, Tsukuba 3050044, Japan
[6] Natl Inst Mat Sci, Res Ctr Mat Nanoarchitecton, 1-1 Namiki, Tsukuba 3050044, Japan
[7] Natl Cheng Kung Univ, Dept Photon, Tainan, Taiwan
[8] Natl Cheng Kung Univ, Acad Innovat Semicond & Sustainable Mfg, Tainan, Taiwan
基金
美国国家科学基金会;
关键词
QUANTUM; ATOMS; EXCITONS; SPIN; WS2;
D O I
10.1038/s41467-024-52014-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Floquet engineering is a promising tool to manipulate quantum systems coherently. A well-known example is the optical Stark effect, which has been used for optical trapping of atoms and breaking time-reversal symmetry in solids. However, as a coherent nonlinear optical effect, Floquet engineering typically requires high field intensities obtained in ultrafast pulses, severely limiting its use. Here, we demonstrate using cavity engineering of the vacuum modes to achieve orders-of-magnitude enhancement of the effective Floquet field, enabling Floquet effects at an extremely low fluence of 450 photons/mu m2. At higher fluences, the cavity-enhanced Floquet effects lead to 50 meV spin and valley splitting of WSe2 excitons, corresponding to an enormous time-reversal breaking, non-Maxwellian magnetic field of over 200 T. Utilizing such an optically controlled effective magnetic field, we demonstrate an ultrafast, picojoule chirality XOR gate. These results suggest that cavity-enhanced Floquet engineering may enable the creation of steady-state or quasi-equilibrium Floquet bands, strongly non-perturbative modifications of materials beyond the reach of other means, and application of Floquet engineering to a wide range of materials and applications. The authors demonstrate enhancement by nearly two-orders of magnitude of the optical Stark effect in WSe2 embedded into a Fabry Perot cavity, and use this mechanism to obtain an effective magnetic field of over 200 T and implement a XOR switch.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Floquet Cavity Electromagnonics
    Xu, Jing
    Zhong, Changchun
    Han, Xu
    Jin, Dafei
    Jiang, Liang
    Zhang, Xufeng
    PHYSICAL REVIEW LETTERS, 2020, 125 (23)
  • [2] Quantum Floquet engineering with an exactly solvable tight-binding chain in a cavity
    Christian J. Eckhardt
    Giacomo Passetti
    Moustafa Othman
    Christoph Karrasch
    Fabio Cavaliere
    Michael A. Sentef
    Dante M. Kennes
    Communications Physics, 5
  • [3] Cavity-Based Reservoir Engineering for Floquet-Engineered Superconducting Circuits
    Petiziol, Francesco
    Eckardt, Andre
    PHYSICAL REVIEW LETTERS, 2022, 129 (23)
  • [4] Light-matter correlations in Quantum Floquet engineering of cavity quantum materials
    Perez-Gonzalez, Beatriz
    Platero, Gloria
    Gomez-Leon, Alvaro
    QUANTUM, 2025, 9
  • [5] Quantum Floquet engineering with an exactly solvable tight-binding chain in a cavity
    Eckhardt, Christian J.
    Passetti, Giacomo
    Othman, Moustafa
    Karrasch, Christoph
    Cavaliere, Fabio
    Sentef, Michael A.
    Kennes, Dante M.
    COMMUNICATIONS PHYSICS, 2022, 5 (01)
  • [6] Chiral current in Floquet cavity magnonics
    Qi, Shi-fan
    Jing, Jun
    PHYSICAL REVIEW A, 2022, 106 (03)
  • [7] Transient Floquet engineering of superconductivity
    Dasari, Nagamalleswararao
    Eckstein, Martin
    PHYSICAL REVIEW B, 2018, 98 (23)
  • [8] Floquet engineering in quantum materials
    Bao, Chang-Hua
    Fan, Ben-Shu
    Tang, Pei-Zhe
    Duan, Wen-Hui
    Zhou, Shu-Yun
    ACTA PHYSICA SINICA, 2023, 72 (23)
  • [9] Floquet engineering in quantum materials
    Bao Chang-Hua
    Fan Ben-Shu
    Tang Pei-Zhe
    Duan Wen-Hui
    Zhou Shu-Yun
    ACTA PHYSICA SINICA, 2023, 72 (30)
  • [10] Floquet Engineering of Quantum Materials
    Oka, Takashi
    Kitamura, Sota
    ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 10, 2019, 10 (01): : 387 - 408