Neural graph distance embedding for molecular geometry generation

被引:0
|
作者
Margraf, Johannes T. [1 ]
机构
[1] Univ Bayreuth, Bavarian Ctr Battery Technol BayBatt, Bayreuth, Germany
关键词
conformers; geometry prediction; graph neural network; machine learning; DATA-EFFICIENT;
D O I
10.1002/jcc.27349
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This article introduces neural graph distance embedding (nGDE), a method for generating 3D molecular geometries. Leveraging a graph neural network trained on the OE62 dataset of molecular geometries, nGDE predicts interatomic distances based on molecular graphs. These distances are then used in multidimensional scaling to produce 3D geometries, subsequently refined with standard bioorganic forcefields. The machine learning-based graph distance introduced herein is found to be an improvement over the conventional shortest path distances used in graph drawing. Comparative analysis with a state-of-the-art distance geometry method demonstrates nGDE's competitive performance, particularly showcasing robustness in handling polycyclic molecules-a challenge for existing methods.
引用
收藏
页码:1784 / 1790
页数:7
相关论文
共 50 条
  • [21] SDE: Graph drawing using spectral distance embedding
    Civril, A
    Magdon-Ismail, M
    Bocek-Rivele, E
    GRAPH DRAWING, 2006, 3843 : 512 - 513
  • [22] Comparison of knowledge-based and distance geometry approaches for generation of molecular conformations
    Feuston, BP
    Miller, MD
    Culberson, JC
    Nachbar, RB
    Kearsley, SK
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2001, 41 (03): : 754 - 763
  • [23] Learning the Geodesic Embedding with Graph Neural Networks
    Pang, Bo
    Zheng, Zhongtian
    Wang, Guoping
    Wang, Peng-Shuai
    ACM TRANSACTIONS ON GRAPHICS, 2023, 42 (06):
  • [24] A Generalization of Recurrent Neural Networks for Graph Embedding
    Han, Xiao
    Zhang, Chunhong
    Guo, Chenchen
    Ji, Yang
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2018, PT II, 2018, 10938 : 247 - 259
  • [25] Learning graph edit distance by graph neural networks
    Riba, Pau
    Fischer, Andreas
    Llados, Josep
    Fornes, Alicia
    PATTERN RECOGNITION, 2021, 120
  • [26] Multimodal Context Embedding for Scene Graph Generation
    Jung, Gayoung
    Kim, Incheol
    JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2020, 16 (06): : 1250 - 1260
  • [27] Quaternion Relation Embedding for Scene Graph Generation
    Wang, Zheng
    Xu, Xing
    Wang, Guoqing
    Yang, Yang
    Shen, Heng Tao
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 8646 - 8656
  • [28] Complex Relation Embedding for Scene Graph Generation
    Wang, Zheng
    Xu, Xing
    Zhang, Yin
    Yang, Yang
    Shen, Heng Tao
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (06) : 8321 - 8335
  • [29] Visualizing Graph Neural Networks With CorGIE: Corresponding a Graph to Its Embedding
    Liu, Zipeng
    Wang, Yang
    Bernard, Juergen
    Munzner, Tamara
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2022, 28 (06) : 2500 - 2516
  • [30] Semantic-guided graph neural network for heterogeneous graph embedding
    Han, Mingjing
    Zhang, Han
    Li, Wei
    Yin, Yanbin
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 232