Multi-scale Attention Conditional GAN for Underwater Image Enhancement

被引:0
|
作者
Li, Yiming [1 ,2 ]
Li, Fei [1 ,2 ]
Li, Zhenbo [1 ,2 ,3 ]
机构
[1] China Agr Univ, Coll Informat & Elect Engn, Beijing 100083, Peoples R China
[2] Minist Agr & Rural Affairs, Natl Innovat Ctr Digital Fishery, Beijing 100083, Peoples R China
[3] Minist Agr & Rural Affairs, Key Lab Agr Informat Acquisit Technol, Beijing, Peoples R China
关键词
Conditional Generative Adversarial Network; Underwater Image Enhancement; Attention Module; QUALITY ASSESSMENT;
D O I
10.1007/978-3-031-50069-5_38
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Underwater image enhancement (UIE) has achieved impressive achievements in various marine tasks, such as aquaculture and biological monitoring. However, complex underwater scenarios impede current UIE method application development. Some UIEmethods utilize convolutional neural network (CNN) based models to improve the quality of degradation images, but these methods fail to capture multi-scale high-level features, leading to sub-optimal results. To address these issues, we propose a multi-scale attention conditional generative adversarial network (GAN), dubbed Mac-GAN, to recover the degraded underwater images by utilizing an encoder-decoder structure. Concretely, a novel multi-scale conditional GAN architecture is utilized to aggregate the multi-scale features and reconstruct the high-quality underwater images with high perceptual information. Different from the reference model, a novel attention module (AMU) is designed to integrate associated features among the channels for the UIE tasks and embedded after the down sampling layer, effectively suppressing non-significant features to improve the extraction effect of multi-scale features. Meanwhile, perceptual loss and total variation loss are utilized to enhance smoothness and suppress artifacts. Extensive experiments demonstrate that our proposed model achieves remarkable results in terms of qualitative and quantitative metrics, such as 0.7dB improvement in PSNR metrics and 0.8dB improvement in UIQM metrics. Moreover, Mac-GAN can generate a pleasing visual result without obvious over-enhancement and over-saturation over the comparison of UIE methods. A detailed set of ablation experiments analyzes core components' contribution to the proposed approach.
引用
收藏
页码:463 / 475
页数:13
相关论文
共 50 条
  • [21] Underwater image enhancement algorithm based on multi-scale block cascade
    Hao Jun-yu
    Yang Hong-bo
    Hou Xia
    Zhang Yang
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2023, 38 (09) : 1272 - 1280
  • [22] Transformer-based Multi-scale Underwater Image Enhancement Network
    Yang, Ai-Ping
    Fang, Si-Jie
    Shao, Ming-Fu
    Zhang, Teng-Fei
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2024, 45 (12): : 1696 - 1705
  • [23] Underwater image enhancement based on color balance and multi-scale fusion
    Hu Z.
    Chen Q.
    Zhu D.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2022, 30 (17): : 2133 - 2146
  • [24] Underwater Image Enhancement Based on Color Balance and Multi-Scale Fusion
    Chen, Qi
    Zhang, Ze
    Li, Gelun
    IEEE PHOTONICS JOURNAL, 2022, 14 (06):
  • [25] A Multi-scale feature modulation network for efficient underwater image enhancement
    Zheng, Shijian
    Wang, Rujing
    Zheng, Shitao
    Wang, Fenmei
    Wang, Liusan
    Liu, Zhigui
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2024, 36 (01)
  • [26] Underwater image enhancement based on color correction and multi-scale fusion
    Tao, Yang
    Wu, Ping
    Liu, Yuting
    Fang, Wenjun
    Zhou, Liqun
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2024, 39 (08) : 1046 - 1056
  • [27] Underwater Image Enhancement Method Based on Multi-scale Cascade Network
    Mi Zetian
    Jin Jie
    Li Yuanyuan
    Ding Xueyan
    Liang Zheng
    Fu Xianping
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2022, 44 (10) : 3353 - 3362
  • [28] Multi-Scale Attention Feature Enhancement Network for Single Image Dehazing
    Dong, Weida
    Wang, Chunyan
    Sun, Hao
    Teng, Yunjie
    Xu, Xiping
    SENSORS, 2023, 23 (19)
  • [29] Multi-Scale Attention Generative Adversarial Network for Medical Image Enhancement
    Zhong, Guojin
    Ding, Weiping
    Chen, Long
    Wang, Yingxu
    Yu, Yu-Feng
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2023, 7 (04): : 1113 - 1125
  • [30] GAN for Semantic Image Synthesis With Laplacian Pyramid and Multi-Scale Channel Attention
    Dong, Xinhua
    Li, Chuang
    Xu, Zhigang
    Han, Hongmu
    Jiang, Lifeng
    IEEE ACCESS, 2024, 12 : 178010 - 178021