Asymptotics for the second moment of the Dirichlet coefficients of symmetric power L-functions
被引:0
|
作者:
Han, Xue
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Normal Univ, Sch Math & Stat, Jinan 250358, Shandong, Peoples R ChinaShandong Normal Univ, Sch Math & Stat, Jinan 250358, Shandong, Peoples R China
Han, Xue
[1
]
Liu, Huafeng
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Normal Univ, Sch Math & Stat, Jinan 250358, Shandong, Peoples R ChinaShandong Normal Univ, Sch Math & Stat, Jinan 250358, Shandong, Peoples R China
Liu, Huafeng
[1
]
机构:
[1] Shandong Normal Univ, Sch Math & Stat, Jinan 250358, Shandong, Peoples R China
cusp forms;
Fourier coefficients;
symmetric power L-function;
FOURIER COEFFICIENTS;
SUMS;
D O I:
10.1007/s10986-024-09636-0
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let m >= 2 be an integer. Let f be a holomorphic Hecke eigenform of even weight k for the full modular group SL(2, Z). Denote by lambda(m)(Sym)(f) (n) the nth normalized Dirichlet coefficient of the corresponding symmetric power L-function L(s, Sym(m) (f)) related to f. In this paper, we study the average behavior of the second moment of the Dirichlet coefficients lambda(m)(Sym)(f) (n) and establish its asymptotic formula.
机构:
Mathematics Department, University of Georgia, Athens,GA,30605, United StatesSDU-ANU Joint Science College, Shandong University, Weihai,264209, China