DeGCN: Deformable Graph Convolutional Networks for Skeleton-Based Action Recognition

被引:7
|
作者
Myung, Woomin [1 ]
Su, Nan [1 ]
Xue, Jing-Hao [2 ]
Wang, Guijin [1 ,3 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
[2] UCL, Dept Stat Sci, London WC1E 6BT, England
[3] Shanghai Artificial Intelligence Lab, Shanghai 200232, Peoples R China
关键词
Skeleton-based action recognition; graph convolutional network; deformable convolution;
D O I
10.1109/TIP.2024.3378886
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph convolutional networks (GCN) have recently been studied to exploit the graph topology of the human body for skeleton-based action recognition. However, most of these methods unfortunately aggregate messages via an inflexible pattern for various action samples, lacking the awareness of intra-class variety and the suitableness for skeleton sequences, which often contain redundant or even detrimental connections. In this paper, we propose a novel Deformable Graph Convolutional Network (DeGCN) to adaptively capture the most informative joints. The proposed DeGCN learns the deformable sampling locations on both spatial and temporal graphs, enabling the model to perceive discriminative receptive fields. Notably, considering human action is inherently continuous, the corresponding temporal features are defined in a continuous latent space. Furthermore, we design an innovative multi-branch framework, which not only strikes a better trade-off between accuracy and model size, but also elevates the effect of ensemble between the joint and bone modalities remarkably. Extensive experiments show that our proposed method achieves state-of-the-art performances on three widely used datasets, NTU RGB+D, NTU RGB+D 120, and NW-UCLA.
引用
收藏
页码:2477 / 2490
页数:14
相关论文
共 50 条
  • [21] A comparative review of graph convolutional networks for human skeleton-based action recognition
    Feng, Liqi
    Zhao, Yaqin
    Zhao, Wenxuan
    Tang, Jiaxi
    ARTIFICIAL INTELLIGENCE REVIEW, 2022, 55 (05) : 4275 - 4305
  • [22] Skeleton-based action recognition by part-aware graph convolutional networks
    Yang Qin
    Lingfei Mo
    Chenyang Li
    Jiayi Luo
    The Visual Computer, 2020, 36 : 621 - 631
  • [23] Mix-hops Graph Convolutional Networks for Skeleton-Based Action Recognition
    Wang, Gang
    Li, Dewei
    Jia, Shuai
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [24] SPATIOTEMPORAL-SPECTRAL GRAPH CONVOLUTIONAL NETWORKS FOR SKELETON-BASED ACTION RECOGNITION
    Chen, Shuo
    Xu, Ke
    Jiang, Xinghao
    Sun, Tanfeng
    2021 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW), 2021,
  • [25] Cross-Channel Graph Convolutional Networks for Skeleton-Based Action Recognition
    Xie, Jun
    Xin, Wentian
    Liu, Ruyi
    Sheng, Lijie
    Liu, Xiangzeng
    Gao, Xuesong
    Zhong, Sheng
    Tang, Lei
    Miao, Qiguang
    IEEE ACCESS, 2021, 9 (09): : 9055 - 9065
  • [26] Attention adjacency matrix based graph convolutional networks for skeleton-based action recognition
    Xie, Jun
    Miao, Qiguang
    Liu, Ruyi
    Xin, Wentian
    Tang, Lei
    Zhong, Sheng
    Gao, Xuesong
    NEUROCOMPUTING, 2021, 440 (440) : 230 - 239
  • [27] SKELETON-BASED ACTION RECOGNITION WITH CONVOLUTIONAL NEURAL NETWORKS
    Li, Chao
    Zhong, Qiaoyong
    Xie, Di
    Pu, Shiliang
    2017 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW), 2017,
  • [28] Skeleton-Based Action Recognition with Shift Graph Convolutional Network
    Cheng, Ke
    Zhang, Yifan
    He, Xiangyu
    Chen, Weihan
    Cheng, Jian
    Lu, Hanqing
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 180 - 189
  • [29] A lightweight graph convolutional network for skeleton-based action recognition
    Dinh-Tan Pham
    Quang-Tien Pham
    Tien-Thanh Nguyen
    Thi-Lan Le
    Hai Vu
    Multimedia Tools and Applications, 2023, 82 : 3055 - 3079
  • [30] Ghost Graph Convolutional Network for Skeleton-based Action Recognition
    Jang, Sungjun
    Lee, Heansung
    Cho, Suhwan
    Woo, Sungmin
    Lee, Sangyoun
    2021 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS-ASIA (ICCE-ASIA), 2021,