Learning to optimize: A tutorial for continuous and mixed-integer optimization

被引:0
|
作者
Chen, Xiaohan [1 ]
Liu, Jialin [1 ]
Yin, Wotao [1 ]
机构
[1] Alibaba DAMO Acad, Decis Intelligence Lab, Bellevue, WA 98004 USA
关键词
AI for mathematics (AI4Math); learning to optimize; algorithm unrolling; plug-and-play methods; differentiable programming; machine learning for combinatorial optimization (ML4CO); BILEVEL OPTIMIZATION; ALGORITHM;
D O I
10.1007/s11425-023-2293-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Learning to optimize (L2O) stands at the intersection of traditional optimization and machine learning, utilizing the capabilities of machine learning to enhance conventional optimization techniques. As real-world optimization problems frequently share common structures, L2O provides a tool to exploit these structures for better or faster solutions. This tutorial dives deep into L2O techniques, introducing how to accelerate optimization algorithms, promptly estimate the solutions, or even reshape the optimization problem itself, making it more adaptive to real-world applications. By considering the prerequisites for successful applications of L2O and the structure of the optimization problems at hand, this tutorial provides a comprehensive guide for practitioners and researchers alike.
引用
收藏
页码:1191 / 1262
页数:72
相关论文
共 50 条
  • [31] Global optimization of mixed-integer nonlinear problems
    Adjiman, CS
    Androulakis, IP
    Floudas, CA
    AICHE JOURNAL, 2000, 46 (09) : 1769 - 1797
  • [32] Fuzzy Programming for Mixed-Integer Optimization Problems
    Lin, Yung-Chin
    Lin, Yung-Chien
    Su, Kuo-Lan
    Lin, Wei-Cheng
    Chen, Tsing-Hua
    PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL SYMPOSIUM ON ARTIFICIAL LIFE AND ROBOTICS (AROB 16TH '11), 2011, : 261 - 264
  • [33] Information complexity of mixed-integer convex optimization
    Basu, Amitabh
    Jiang, Hongyi
    Kerger, Phillip
    Molinaro, Marco
    MATHEMATICAL PROGRAMMING, 2025, 210 (1-2) : 3 - 45
  • [34] Information Complexity of Mixed-Integer Convex Optimization
    Basu, Amitabh
    Jiang, Hongyi
    Kerger, Phillip
    Molinaro, Marco
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, IPCO 2023, 2023, 13904 : 1 - 13
  • [35] MISO: mixed-integer surrogate optimization framework
    Mueller, Juliane
    OPTIMIZATION AND ENGINEERING, 2016, 17 (01) : 177 - 203
  • [36] Evolutionary Mixed-Integer Optimization with Explicit Constraints
    Hong, Yuan
    Arnold, Dirk V.
    PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, GECCO 2023, 2023, : 822 - 830
  • [37] Disjunctive cuts in Mixed-Integer Conic Optimization
    Andrea Lodi
    Mathieu Tanneau
    Juan-Pablo Vielma
    Mathematical Programming, 2023, 199 : 671 - 719
  • [38] Disjunctive cuts in Mixed-Integer Conic Optimization
    Lodi, Andrea
    Tanneau, Mathieu
    Vielma, Juan-Pablo
    MATHEMATICAL PROGRAMMING, 2023, 199 (1-2) : 671 - 719
  • [39] Fuzzy programming for mixed-integer optimization problems
    Lin Y.-C.
    Lin Y.-C.
    Su K.-L.
    Lin W.-C.
    Chen T.-H.
    Artificial Life and Robotics, 2011, 16 (2) : 174 - 177
  • [40] New algorithms for mixed-integer dynamic optimization
    Bansal, V
    Sakizlis, V
    Ross, R
    Perkins, JD
    Pistikopoulos, EN
    COMPUTERS & CHEMICAL ENGINEERING, 2003, 27 (05) : 647 - 668