Convergence of projected subgradient method with sparse or low-rank constraints

被引:0
|
作者
Xu, Hang [1 ]
Li, Song [2 ]
Lin, Junhong [3 ]
机构
[1] Zhejiang Univ, Sch Phys, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Peoples R China
[3] Zhejiang Univ, Ctr Data Sci, Hangzhou 310027, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Sparse constraint; Low-rank constraint; Projected subgradient method; Mixed noises; Nonsmooth formulation; STABLE SIGNAL RECOVERY; MATRIX RECOVERY; OPTIMIZATION; ALGORITHM;
D O I
10.1007/s10444-024-10163-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Many problems in data science can be treated as recovering structural signals from a set of linear measurements, sometimes perturbed by dense noise or sparse corruptions. In this paper, we develop a unified framework of considering a nonsmooth formulation with sparse or low-rank constraint for meeting the challenges of mixed noises-bounded noise and sparse noise. We show that the nonsmooth formulations of the problems can be well solved by the projected subgradient methods at a rapid rate when initialized at any points. Consequently, nonsmooth loss functions (& ell;1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1$$\end{document}-minimization programs) are naturally robust against sparse noise. Our framework simplifies and generalizes the existing analyses including compressed sensing, matrix sensing, quadratic sensing, and bilinear sensing. Motivated by recent work on the stochastic gradient method, we also give some experimentally and theoretically preliminary results about the projected stochastic subgradient method.
引用
收藏
页数:45
相关论文
共 50 条
  • [41] Improved sparse low-rank matrix estimation
    Parekh, Ankit
    Selesnick, Ivan W.
    SIGNAL PROCESSING, 2017, 139 : 62 - 69
  • [42] STRUCTURED SPARSE REPRESENTATION WITH LOW-RANK INTERFERENCE
    Dao, Minh
    Suo, Yuanming
    Chin, Sang
    Tran, Trac D.
    CONFERENCE RECORD OF THE 2014 FORTY-EIGHTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2014, : 106 - 110
  • [43] Low-Rank and Structured Sparse Subspace Clustering
    Zhang, Junjian
    Li, Chun-Guang
    Zhang, Honggang
    Guo, Jun
    2016 30TH ANNIVERSARY OF VISUAL COMMUNICATION AND IMAGE PROCESSING (VCIP), 2016,
  • [44] A New Representation for Data: Sparse and Low-Rank
    Sun, Jing
    Wu, Zongze
    Zeng, Deyu
    Ren, Zhigang
    2018 CHINESE AUTOMATION CONGRESS (CAC), 2018, : 1477 - 1482
  • [45] Low-Rank Sparse Subspace for Spectral Clustering
    Zhu, Xiaofeng
    Zhang, Shichao
    Li, Yonggang
    Zhang, Jilian
    Yang, Lifeng
    Fang, Yue
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2019, 31 (08) : 1532 - 1543
  • [46] Low-Rank Sparse Coding for Image Classification
    Zhang, Tianzhu
    Ghanem, Bernard
    Liu, Si
    Xu, Changsheng
    Ahuja, Narendra
    2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, : 281 - 288
  • [47] Sparse subspace clustering with low-rank transformation
    Gang Xu
    Mei Yang
    Qiufeng Wu
    Neural Computing and Applications, 2019, 31 : 3141 - 3154
  • [48] Low-Rank and Sparse Matrix Completion for Recommendation
    Zhao, Zhi-Lin
    Huang, Ling
    Wang, Chang-Dong
    Lai, Jian-Huang
    Yu, Philip S.
    NEURAL INFORMATION PROCESSING, ICONIP 2017, PT V, 2017, 10638 : 3 - 13
  • [49] Low-Rank Graph Regularized Sparse Coding
    Zhang, Yupei
    Liu, Shuhui
    Shang, Xuequn
    Xiang, Ming
    PRICAI 2018: TRENDS IN ARTIFICIAL INTELLIGENCE, PT I, 2018, 11012 : 177 - 190
  • [50] A Multiview Clustering Method With Low-Rank and Sparsity Constraints for Cancer Subtyping
    Huang Zhanpeng
    Wu Jiekang
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2022, 19 (06) : 3213 - 3223