Continuity of Operator Functions in the Topology of Local Convergence in Measure

被引:0
|
作者
Bikchentaev, A. M. [1 ]
Tikhonov, O. E. [1 ]
机构
[1] Kazan Fed Univ, NI Lobachevsky Inst Math & Mech, Kremlevskaya Ul 35, Kazan 420008, Russia
关键词
Hilbert space; linear operator; von Neumann algebra; normal trace; measurable operator; local convergence in measure; continuity of operator functions; ALGEBRAS;
D O I
10.1134/S008154382401005X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let a von Neumann algebra M of operators act on a Hilbert space H, and let tau be a faithful normal semifinite trace on M. Let t(tau l) be the topology of tau-local convergence in measure on the *-algebra S(M, tau) of all tau-measurable operators. We prove the t(tau l)-continuity of the involution on the set of all normal operators in S(M, tau), investigate the t(tau l)-continuity of operator functions on S(M, tau), and show that the map A -> vertical bar A vertical bar is t(tau l)-continuous on the set of all partial isometries in M.
引用
收藏
页码:44 / 52
页数:9
相关论文
共 50 条