MGH: Metadata Guided Hypergraph Modeling for Unsupervised Person Re-identification

被引:20
|
作者
Wu, Yiming [1 ]
Wu, Xintian [1 ]
Li, Xi [1 ]
Tian, Jian [1 ]
机构
[1] Zhejiang Univ, Hangzhou, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Unsupervised Person Re-Identification; Metadata; Hypergraph; List-wise; Loss; Memory; DOMAIN ADAPTATION;
D O I
10.1145/3474085.3475296
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As a challenging task, unsupervised person ReID aims to match the same identity with query images which does not require any labeled information. In general, most existing approaches focus on the visual cues only, leaving potentially valuable auxiliary metadata information (e.g., spatio-temporal context) unexplored. In the real world, such metadata is normally available alongside captured images, and thus plays an important role in separating several hard ReID matches. With this motivation in mind, we propose MGH, a novel unsupervised person ReID approach that uses meta information to construct a hypergraph for feature learning and label refinement. In principle, the hypergraph is composed of camera-topology-aware hyperedges, which can model the heterogeneous data correlations across cameras. Taking advantage of label propagation on the hypergraph, the proposed approach is able to effectively refine the ReID results, such as correcting the wrong labels or smoothing the noisy labels. Given the refined results, We further present a memory-based listwise loss to directly optimize the average precision in an approximate manner. Extensive experiments on three benchmarks demonstrate the effectiveness of the proposed approach against the state-of-the-art.
引用
收藏
页码:1571 / 1580
页数:10
相关论文
共 50 条
  • [41] Adaptation and Re-Identification Network: An Unsupervised Deep Transfer Learning Approach to Person Re-Identification
    Li, Yu-Jhe
    Yang, Fu-En
    Liu, Yen-Cheng
    Yeh, Yu-Ying
    Du, Xiaofei
    Wang, Yu-Chiang Frank
    PROCEEDINGS 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2018, : 285 - 291
  • [42] Constrained Dictionary Learning and Probabilistic Hypergraph Ranking for Person Re-identification
    He, You
    Wu, Song
    Pu, Nan
    Qian, Li
    Xiao, Guoqiang
    NINTH INTERNATIONAL CONFERENCE ON GRAPHIC AND IMAGE PROCESSING (ICGIP 2017), 2018, 10615
  • [43] Momentum source-proxy guided initialization for unsupervised domain adaptive person re-identification
    Xi, Jiali
    Zhou, Qin
    Li, Xinzhe
    Zheng, Shibao
    NEUROCOMPUTING, 2022, 483 : 116 - 126
  • [44] Adaptive Memorization With Group Labels for Unsupervised Person Re-Identification
    Peng, Jinjia
    Jiang, Guangqi
    Wang, Huibing
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (10) : 5802 - 5813
  • [45] Unsupervised Person Re-identification: Clustering and Fine-tuning
    Fan, Hehe
    Zheng, Liang
    Yan, Chenggang
    Yang, Yi
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2018, 14 (04)
  • [46] Joint Memory with Distance Recalculation for Unsupervised Person Re-Identification
    Zheng, Lifeng
    Yu, Yangbin
    Hu, Haifeng
    Chen, Dihu
    2022 PROGNOSTICS AND HEALTH MANAGEMENT CONFERENCE, PHM-LONDON 2022, 2022, : 462 - 467
  • [47] Disentangled Sample Guidance Learning for Unsupervised Person Re-Identification
    Ji, Haoxuanye
    Wang, Le
    Zhou, Sanping
    Tang, Wei
    Hua, Gang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 5144 - 5158
  • [48] A new robust contrastive learning for unsupervised person re-identification
    Huibin Lin
    Hai-Tao Fu
    Chun-Yang Zhang
    C. L. Philip Chen
    International Journal of Machine Learning and Cybernetics, 2024, 15 : 1779 - 1793
  • [49] Distributed and Unsupervised Cost-Driven Person Re-identification
    Martinel, Niki
    Foresti, Gian Luca
    Micheloni, Christian
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 1225 - 1230
  • [50] Unsupervised Person Re-identification via Diversity and Salience Clustering
    Long, Xiaoyi
    Hu, Ruimin
    Xu, Xin
    2021 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2021, : 2761 - 2766