Intrusion detection for Industrial Internet of Things based on deep learning

被引:5
|
作者
Lu, Yaoyao [1 ]
Chai, Senchun [1 ]
Suo, Yuhan [1 ]
Yao, Fenxi [1 ]
Zhang, Chen [1 ]
机构
[1] Beijing Inst Technol, Sch Automat, Beijing 100081, Peoples R China
关键词
Intrusion detection; IIoT; Data imbalance; Feature selection; Deep learning; NETWORKS;
D O I
10.1016/j.neucom.2023.126886
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Intrusion detection technology can actively detect abnormal behaviors in the network and is important to the security of Industrial Internet of Things (IIOT). However, there are some issues with the current intrusion detection technology for IIOT, such as extreme imbalance in the number of samples of different classes in the dataset, redundant and meaningless features in the samples, and the inability of traditional intrusion detection methods to meet the requirements of detection accuracy in the increasingly complex IIOT. In view of the extreme imbalance of classes, this paper applies the hierarchical clustering algorithm to the under- sampling technology, which reduces the number of majority samples while reducing the loss of information of majority samples, and solves the problem of missing detection and false detection of minority samples caused by sample imbalance. In order to avoid feature redundancy and interference, this paper proposes an optimal feature selection algorithm based on greedy thought. This algorithm can obtain the optimal feature subset of each type of data in the data set, thus eliminating redundant and interfering features. Aiming at the problem of insufficient detection ability of traditional detection methods, this paper proposes a deep neural network intrusion detection model based on the parallel connection of global and local subnetworks. This model obtains the overall benchmark detection of the dataset through the deep neural network, and then strengthens the detection effect of each subclass through the parallel connection of subnetworks, greatly improving the performance of the intrusion detection algorithm. The experimental results show that the method described in this paper can improve the intrusion detection for IIOT.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Deep Learning-Based Network Intrusion Detection System for Internet of Medical Things
    Ravi V.
    Pham T.D.
    Alazab M.
    IEEE Internet of Things Magazine, 2023, 6 (02): : 50 - 54
  • [22] A Hierarchical Deep Learning-Based Intrusion Detection Architecture for Clustered Internet of Things
    Elsayed, Rania
    Hamada, Reem
    Hammoudeh, Mohammad
    Abdalla, Mahmoud
    Elsaid, Shaimaa Ahmed
    JOURNAL OF SENSOR AND ACTUATOR NETWORKS, 2023, 12 (01)
  • [23] The robust deep learning-based schemes for intrusion detection in Internet of Things environments
    Fu, Xingbing
    Zhou, Nan
    Jiao, Libin
    Li, Haifeng
    Zhang, Jianwu
    ANNALS OF TELECOMMUNICATIONS, 2021, 76 (5-6) : 273 - 285
  • [24] Towards Deep-Learning-Driven Intrusion Detection for the Internet of Things
    Thamilarasu, Geethapriya
    Chawla, Shiven
    SENSORS, 2019, 19 (09)
  • [25] Internet of Things (IoTs) Security: Intrusion Detection using Deep Learning
    Sahingoz, Ozgur Koray
    Cekmez, Ugur
    Buldu, Ali
    JOURNAL OF WEB ENGINEERING, 2021, 20 (06): : 1721 - 1760
  • [26] A Federated Learning-Based Approach for Improving Intrusion Detection in Industrial Internet of Things Networks
    Rashid, Md Mamunur
    Khan, Shahriar Usman
    Eusufzai, Fariha
    Redwan, Md. Azharuddin
    Sabuj, Saifur Rahman
    Elsharief, Mahmoud
    NETWORK, 2023, 3 (01): : 158 - 179
  • [27] Blockchain based federated learning for intrusion detection for Internet of Things
    Nan Sun
    Wei Wang
    Yongxin Tong
    Kexin Liu
    Frontiers of Computer Science, 2024, 18
  • [28] Blockchain based federated learning for intrusion detection for Internet of Things
    Sun, Nan
    Wang, Wei
    Tong, Yongxin
    Liu, Kexin
    FRONTIERS OF COMPUTER SCIENCE, 2024, 18 (05)
  • [29] Intrusion Detection Model for Industrial Internet of Things Based on Improved Autoencoder
    Zhang, Wumei
    Zhang, Yongzhen
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [30] A TabPFN-based intrusion detection system for the industrial internet of things
    Ruiz-Villafranca, Sergio
    Roldan-Gomez, Jose
    Gomez, Juan Manuel Castelo
    Carrillo-Mondejar, Javier
    Martinez, Jose Luis
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (14): : 20080 - 20117