Study on the bond properties between BFRP bars and hybrid fibers reinforced recycled concrete under freeze-thaw cycles

被引:0
|
作者
Su, Yanming [1 ]
机构
[1] Shenyang Jianzhu Univ, Sch Civil Engn, Shenyang, Peoples R China
基金
中国国家自然科学基金;
关键词
Hybrid fibers; recycled concrete; freeze-thaw cycles; BFRP bars; bond properties; MECHANICAL-PROPERTIES; AGGREGATE; PERFORMANCE; BEHAVIOR; WASTE;
D O I
10.1080/01694243.2024.2345961
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
To study the bond properties between basalt fiber reinforced polymer (BFRP) bars and hybrid fibers which were basalt fiber (BF) and polypropylene fiber (PF) reinforced recycled concrete under freeze-thaw cycles, conducting center pull-out tests to study the effects of three factors on the bond properties: the number of freeze-thaw cycles, the volume fractions of single fiber, and the volume fractions of hybrid fibers. Based on the data obtained from the test, establishing a four-stage bond-slip constitutive relationship model. The results showed that the failure modes were pull-out failure and splitting failure. The bond strength decreased when adding the single fiber, with a maximum reduction of 13.18%, but the peak slip increased, with a maximum increase of 69.92%. When the volume fraction of BF was 0.3%, it achieved the optimal effect. The bond strength and peak slip increased when adding hybrid fibers, with maximum increases of 13.47 and 130.08%, respectively. However, excessive fiber content will reduce the increase of bond strength. The bond strength between BFRP bars and hybrid fiber-reinforced recycled aggregate concrete (HFRAC) increased when the number of freeze-thaw cycles increased but decreased when the number of freeze-thaw cycles exceeded 50. The four-stage bond-slip constitutive relationship model fitted well with the bond-slip curves. Compared with other fiber-reinforced recycled concrete specimens, this model fitted better with the curves of HFRAC specimens after freeze-thaw cycles and had the best fitting effect for the internal crack slip stage of the curves.
引用
收藏
页码:3579 / 3600
页数:22
相关论文
共 50 条
  • [21] Mechanical properties and damage model of modified recycled concrete under freeze-thaw cycles
    Wang, Yonggui
    Xie, Meng
    Zhang, Juan
    JOURNAL OF BUILDING ENGINEERING, 2023, 78
  • [22] Bond behavior between steel bar and recycled aggregate concrete after freeze-thaw cycles
    Shang, Huai-shuai
    Zhao, Tie-jun
    Cao, Wei-qun
    COLD REGIONS SCIENCE AND TECHNOLOGY, 2015, 118 : 38 - 44
  • [23] Experimental Study on the Mechanical Properties of BFRP Bars after High-temperature and Freeze-thaw Cycles
    Lin, Mingan
    Lin, Jiajian
    Journal of Railway Engineering Society, 2023, 40 (08) : 18 - 22
  • [24] STUDY ON CREEP OF CONCRETE UNDER FREEZE-THAW CYCLES
    Cao, Jian
    Wang, Yuan-Feng
    Zhao, Shang-Chuan
    ISISS '2009: INNOVATION & SUSTAINABILITY OF STRUCTURES, VOLS 1 AND 2, 2009, : 1111 - 1115
  • [25] Study on mechanical properties and microcosmic morphology of polypropylene fiber reinforced recycled concrete after freeze-thaw cycles
    He, Zhen-Jun
    Zhang, Lu
    Cheng, Chuan
    Chen, Ying
    Jin, Ying-Xi
    EUROPEAN JOURNAL OF ENVIRONMENTAL AND CIVIL ENGINEERING, 2024, 28 (14) : 3412 - 3434
  • [26] Bond performance of thermal insulation concrete under freeze-thaw cycles
    Liu, Yuanzhen
    Chen, Y. Frank
    Wang, Wenjing
    Li, Zhu
    CONSTRUCTION AND BUILDING MATERIALS, 2016, 104 : 116 - 125
  • [27] Corrosion cracking behavior of reinforced concrete under freeze-thaw cycles
    Liu, Xiguang
    Yan, Ziwei
    Wang, Dongjing
    Zhao, Rong
    Niu, Ditao
    Wang, Yan
    JOURNAL OF BUILDING ENGINEERING, 2023, 64
  • [28] Bond Behavior of Reinforced Concrete Considering Freeze-Thaw Cycles and Corrosion of Stirrups
    Liu, Shuo
    Du, Maohua
    Tian, Yubin
    Wang, Xuanang
    Sun, Guorui
    MATERIALS, 2021, 14 (16)
  • [29] Seismic performance of reinforced concrete beams under freeze-thaw cycles
    Rong, Xian-Liang
    Zhang, Yi-Xin
    Zheng, Shan-Suo
    Wang, Jun-Yan
    Dong, Li-Guo
    Dai, Kuang-Yu
    JOURNAL OF BUILDING ENGINEERING, 2022, 60
  • [30] Correlation between mechanical properties and pore structure deterioration of recycled concrete under sulfate freeze-thaw cycles: An experimental study
    Wei, Yimeng
    Chen, Xingzhou
    Chai, Junrui
    Qin, Yuan
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 412