A note on average behaviour of the Fourier coefficients of jth symmetric power L-function over certain sparse sequence of positive integers

被引:0
|
作者
Wang, Youjun [1 ]
机构
[1] Henan Univ, Sch Math & Stat, 1 Jinming Rd, Kaifeng 475004, Peoples R China
基金
中国国家自然科学基金;
关键词
cusp form; Fourier coefficient; symmetric power L-function; FORMS;
D O I
10.21136/CMJ.2024.0038-24
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let j >= 2 be a given integer. Let H-k* be the set of all normalized primitive holomorphic cusp forms of even integral weight k >= 2 for the full modulo group SL(2, Z). For f is an element of H-k*, denote by lambda(symj f)(n) the nth normalized Fourier coefficient of jth symmetric power L-function (L(s, sym(j) f)) attached to f. We are interested in the average behaviour of the sum & sum;(n=a12+a22+a32+a42+a52+a62 <= x(a1,a2,a3,a4,a5,a6)is an element of Z6) lambda(2)(symj f)(n), where x is sufficiently large, which improves the recent work of A. Sharma and A. Sankaranarayanan (2023).
引用
收藏
页码:623 / 636
页数:14
相关论文
共 21 条