The Average Behaviors of the Fourier Coefficients of j-th Symmetric Power L-Function over Two Sparse Sequences of Positive Integers

被引:3
|
作者
Liu, Huafeng [1 ]
Yang, Xiaojie [1 ]
机构
[1] Shandong Normal Univ, Sch Math & Stat, Jinan 250358, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Fourier coefficients; j-th symmetric L-function; Dirichlet character; CUSP FORMS; MOMENT; SUM;
D O I
10.1007/s41980-023-00850-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose that x is a sufficiently large number and j >= 2 is any integer. Let L(s,sym(j)f) be the j-th symmetric power L-function associated with the primitive holomorphic cusp form f of weight k for the full modular group SL2(Z). Also, let lambda(symjf)(n) be the n-th normalized Dirichlet coefficient of L(s,sym(j)f). In this paper, we establish asymptotic formulas for sums of Dirichlet coefficients lambda(symjf)(n) over two sparse sequences of positive integers, which improves previous results.
引用
收藏
页数:16
相关论文
共 8 条