Control for Grid-Connected VSC With Improved Damping Based on Physics-Informed Neural Network

被引:5
|
作者
Bana, Prabhat Ranjan [1 ]
Amin, Mohammad [2 ]
机构
[1] Norwegian University of Science and Technology, Department of Electric Energy, Trondheim,7491, Norway
[2] Enchanted Rock Management Llc, Houston,TX,77002, United States
关键词
Adaptive control systems - Controllers - Damping - Dynamics - Electric power system control - Multilayer neural networks - Renewable energy resources;
D O I
10.1109/JESTIE.2023.3258339
中图分类号
学科分类号
摘要
The rapid penetration of renewable energy sources into the power system makes the grid-connected voltage source converter (VSC) highly dynamic and uncertain. This necessitates designing new adaptive control for VSCs to ensure satisfactory system performance, reliability, and stability. This article introduces a physics-informed artificial neural network (ANN) controller for the grid-connected VSC to improve the system performance and dampen the voltage oscillation due to the sudden change in power demand. The employed ANN structure is a feed-forward multilayer neural network trained offline by the Levenberg-Marquardt-based backpropagation algorithm. Results are presented for different dynamic scenarios to show the satisfactory operation of the proposed controller. The small-signal stability analysis is presented to validate the system's stability. Further, the performance of the proposed ANN controller is compared with the widely-used PI controller and model predictive controller. The results prove that the proposed controller has a better dynamic performance in damping the voltage oscillation. © 2020 IEEE.
引用
收藏
页码:878 / 888
相关论文
共 50 条
  • [21] Is L2 Physics-Informed Loss Always Suitable for Training Physics-Informed Neural Network?
    Wang, Chuwei
    Li, Shanda
    He, Di
    Wang, Liwei
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [22] LyZNet with Control: Physics-Informed Neural Network Control of Nonlinear Systems with Formal Guarantees
    Liu, Jun
    Meng, Yiming
    Zhou, Ruikun
    IFAC PAPERSONLINE, 2024, 58 (11): : 201 - 206
  • [23] Physics-informed Neural Network for system identification of rotors
    Liu, Xue
    Cheng, Wei
    Xing, Ji
    Chen, Xuefeng
    Zhao, Zhibin
    Zhang, Rongyong
    Huang, Qian
    Lu, Jinqi
    Zhou, Hongpeng
    Zheng, Wei Xing
    Pan, Wei
    IFAC PAPERSONLINE, 2024, 58 (15): : 307 - 312
  • [24] A Physics-Informed Recurrent Neural Network for RRAM Modeling
    Sha, Yanliang
    Lan, Jun
    Li, Yida
    Chen, Quan
    ELECTRONICS, 2023, 12 (13)
  • [25] A physics-informed neural network for Kresling origami structures
    Liu, Chen-Xu
    Wang, Xinghao
    Liu, Weiming
    Yang, Yi-Fan
    Yu, Gui-Lan
    Liu, Zhanli
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2024, 269
  • [26] Realizing the Potential of Physics-Informed Neural Network in Modelling
    Kheirandish, Zahra
    Schulz, Wolfgang
    JOURNAL OF LASER MICRO NANOENGINEERING, 2024, 19 (03): : 209 - 213
  • [27] Physics-informed Neural Network for Quadrotor Dynamical Modeling
    Gu, Weibin
    Primatesta, Stefano
    Rizzo, Alessandro
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2024, 171
  • [28] Parareal with a Physics-Informed Neural Network as Coarse Propagator
    Ibrahim, Abdul Qadir
    Goetschel, Sebastian
    Ruprecht, Daniel
    EURO-PAR 2023: PARALLEL PROCESSING, 2023, 14100 : 649 - 663
  • [29] Physics-informed neural network for diffusive wave model
    Hou, Qingzhi
    Li, Yixin
    Singh, Vijay P.
    Sun, Zewei
    JOURNAL OF HYDROLOGY, 2024, 637
  • [30] Outlier-resistant physics-informed neural network
    Duarte, D. H. G.
    Lima, P. D. S. de
    Araujo, J. M. de
    PHYSICAL REVIEW E, 2025, 111 (02)