Data assimilation for phase-field simulations of the formation of eutectic alloy microstructures

被引:1
|
作者
Seguchi, Yusuke [1 ]
Okugawa, Masayuki [1 ]
Zhu, Chuanqi [1 ]
Yamanaka, Akinori [2 ]
Koziumi, Yuichiro [1 ]
机构
[1] Osaka Univ, Grad Sch Engn, Div Mat & Mfg Sci, 2-1 Yamadaoka, Suita, Osaka 5650871, Japan
[2] Tokyo Univ Agr & Technol, Dept Mech Syst Engn, 2-24-16 Naka Cho, Koganei, Tokyo 1848588, Japan
基金
日本科学技术振兴机构;
关键词
Eutectic alloy; Phase-field method; One-directional solidification; Data assimilation; Ensemble Kalman filter; IN-SITU MEASUREMENTS; RAPID SOLIDIFICATION; GROWTH; MECHANISM; SYSTEM; MODEL;
D O I
10.1016/j.commatsci.2024.112910
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The phase-field (PF) method can effectively predict the formation of microstructures of eutectic alloys. However, numerous simulation parameters must be determined correctly for each alloy system to reproduce the experimentally observed microstructures. In this study, we present a data assimilation method based on an ensemble Kalman filter to determine PF simulation parameters for the directional solidification of eutectic alloy by optimizing the conditions for data assimilation. Numerical twin experiments revealed that eutectic microstructures can be reproduced, although four PF simulation parameters remained unknown. We also investigated appropriate experimental observation conditions for estimating the simulation parameters and found that the sufficient frequency of observations can be determined from the solid-liquid interfacial velocity. Our results provide guidance for data assimilation combined with the PF simulations of eutectic alloys. Moreover, our study provides a deeper understanding of the formation mechanisms of various types of eutectic microstructures.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] Progress in phase-field method integrated with data assimilation
    YAMANAKA A.
    Keikinzoku/Journal of Japan Institute of Light Metals, 2019, 69 (12): : 591 - 601
  • [12] Phase-Field Modeling of Binary Eutectic Alloy Solidification with Convection
    Meyer, Stefan
    Otic, Ivan
    Cheng, Xu
    NUCLEAR SCIENCE AND ENGINEERING, 2016, 184 (03) : 377 - 387
  • [13] Phase-field simulation of lamellar growth for a binary eutectic alloy
    Li Xin-zhong
    Liu Dong-mei
    Sun Tao
    Su Yan-qing
    Guo Jing-jie
    Fu Heng-zhi
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2010, 20 (02) : 302 - 307
  • [14] Phase-field simulation of lamellar growth for a binary eutectic alloy
    李新中
    刘冬梅
    孙涛
    苏彦庆
    郭景杰
    傅恒志
    TransactionsofNonferrousMetalsSocietyofChina, 2010, 20 (02) : 302 - 307
  • [15] Stochastic phase-field simulations of symmetric alloy solidification
    Benítez, R
    Ramírez-Piscina, L
    FLUCTUATION AND NOISE LETTERS, 2004, 4 (03): : L505 - L510
  • [16] Multicomponent alloy solidification: Phase-field modeling and simulations
    Nestler, B
    Garcke, H
    Stinner, B
    PHYSICAL REVIEW E, 2005, 71 (04):
  • [17] Massively Parallel Phase-Field Simulations for Ternary Eutectic Directional Solidification
    Bauer, Martin
    Hoetzer, Johannes
    Jainta, Marcus
    Steinmetz, Philipp
    Berghoff, Marco
    Schornbaum, Florian
    Godenschwager, Christian
    Koestler, Harald
    Nestler, Britta
    Ruede, Ulrich
    PROCEEDINGS OF SC15: THE INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS, 2015,
  • [18] Large scale phase-field simulations of directional ternary eutectic solidification
    Hoetzer, Johannes
    Jainta, Marcus
    Steinmetz, Philipp
    Nestler, Britta
    Dennstedt, Anne
    Genau, Amber
    Bauer, Martin
    Koestler, Harald
    Ruede, Ulrich
    ACTA MATERIALIA, 2015, 93 : 194 - 204
  • [19] Phase-field modeling of eutectic Ti-Fe alloy solidification
    Kundin, J.
    Kumar, R.
    Schlieter, A.
    Choudhary, M. A.
    Gemming, T.
    Kuehn, U.
    Eckert, J.
    Emmerich, H.
    COMPUTATIONAL MATERIALS SCIENCE, 2012, 63 : 319 - 328
  • [20] Phase-field simulations of eutectic solidification using an adaptive finite element method
    Danilov, D
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2006, 20 (07): : 853 - 867