A new approach for dynamic output feedback control design of time-delayed nonlinear systems

被引:0
|
作者
Peixoto, Marcia L. C. [1 ,2 ]
Pessim, Paulo S. P. [3 ]
Palhares, Reinaldo M. [4 ]
机构
[1] Univ Polytech Hauts De France, LAMIH Lab, CNRS, UMR 8201, Valenciennes, France
[2] Univ Polytech Hauts De France, INSA Hauts De France, Valenciennes, France
[3] Univ Fed Minas Gerais, Grad Program Elect Engn, Belo Horizonte, Brazil
[4] Univ Fed Minas Gerais, Dept Elect Engn, Belo Horizonte, Brazil
关键词
Dynamic output-feedback control; LPV systems; Time-varying delays; Lyapunov-Krasovskii stability; STABILIZATION;
D O I
10.1016/j.ejcon.2024.100993
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces a full -order dynamic output -feedback (DOF) controller for discrete -time nonlinear systems with time -varying delays represented by Linear Parameter -Varying (LPV) systems. The controller design is carried out by developing delay -dependent Linear Matrix Inequality based conditions using Lyapunov- Krasovskii stability arguments. A notable characteristic of the proposed approach is that the dynamic controller gains are directly obtained, without the need for variable transformations, equality constraints, or iterative algorithms. This feature sets it apart from many existing approaches in the literature and simplifies the design process. Furthermore, the proposed approach guarantees the local asymptotic stability of the origin of the closed -loop system and provides an estimated admissible initial condition region. The correct operation of the system is ensured once the state trajectories initiated within the admissible initial condition region remain enclosed in the validity domain of the LPV model. Numerical examples are provided to illustrate the potential and effectiveness of the proposed conditions.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] CONTROL OF SYNCHRONIZATION IN COUPLED NEURAL SYSTEMS BY TIME-DELAYED FEEDBACK
    Hoevel, Philipp
    Dahlem, Markus A.
    Schoell, Eckehard
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (03): : 813 - 825
  • [42] Mechanism of time-delayed feedback control
    Just, W
    Bernard, T
    Ostheimer, M
    Reibold, E
    Benner, H
    PHYSICAL REVIEW LETTERS, 1997, 78 (02) : 203 - 206
  • [43] Limits of time-delayed feedback control
    Max Planck Inst. Phys. Complex Syst., Nöthnitzer Straße 38, D-01187 Dresden, Germany
    不详
    不详
    Phys Lett Sect A Gen At Solid State Phys, 3-4 (158-164):
  • [44] Time-Delayed Feedback Control in Astrodynamics
    Biggs, James D.
    McInnes, Colin R.
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2009, 32 (06) : 1804 - 1811
  • [45] Time-Delayed Quantum Feedback Control
    Grimsmo, Arne L.
    PHYSICAL REVIEW LETTERS, 2015, 115 (06)
  • [46] Limits of time-delayed feedback control
    Just, W
    Reibold, E
    Benner, H
    Kacperski, K
    Fronczak, P
    Holyst, J
    PHYSICS LETTERS A, 1999, 254 (3-4) : 158 - 164
  • [47] Adaptive output control of nonlinear time-delayed systems with uncertain dead-zone input
    Zhou, Jing
    Er, Meng Joo
    Veluvolu, Kalyana C.
    2006 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2006, 1-12 : 220 - +
  • [48] Parameter Identification of Nonlinear Aeroelastic System with Time-Delayed Feedback Control
    Liu, G.
    Wang, L.
    Liu, J. K.
    Lu, Z. R.
    AIAA JOURNAL, 2020, 58 (01) : 415 - 425
  • [49] Chaotic synchronization and modulation of nonlinear time-delayed feedback optical systems
    Swiss Federal Inst of Technology, Lausanne, Switzerland
    IEEE Trans Circuits Syst I Fundam Theor Appl, 8 (455-463):
  • [50] Global view on a nonlinear oscillator subject to time-delayed feedback control
    Erzgraber, Hartmut
    Just, Wolfram
    PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (16) : 1680 - 1687