Dynamic berth allocation under uncertainties based on deep reinforcement learning towards resilient ports

被引:5
|
作者
Lv, Yaqiong [1 ,2 ]
Zou, Mingkai [2 ]
Li, Jun [3 ]
Liu, Jialun [1 ,4 ,5 ]
机构
[1] Wuhan Univ Technol, State Key Lab Maritime Technol & Safety, Wuhan 430063, Peoples R China
[2] Wuhan Univ Technol, Sch Transportat & Logist Engn, Wuhan 430063, Peoples R China
[3] Fujian Jiangxia Univ, Sch Business Adm, Fuzhou, Peoples R China
[4] Wuhan Univ Technol, Intelligent Transportat Syst Res Ctr, Wuhan 430063, Peoples R China
[5] Natl Engn Res Ctr Water Transport Safety, Wuhan 430063, Peoples R China
基金
中国国家自然科学基金;
关键词
Dynamic berth allocation; Uncertainty; Deep reinforcement learning; Resilient port; CRANE SCHEDULING PROBLEM; CONTAINER TERMINALS; STOCHASTIC ARRIVAL; MODEL;
D O I
10.1016/j.ocecoaman.2024.107113
中图分类号
P7 [海洋学];
学科分类号
0707 ;
摘要
With the evolving global trade landscape and the post-pandemic effects, the resilience of ports has become paramount. The unforeseen disturbances bring substantial challenges, especially in berth allocation, a vital task ensuring seamless resilient port operations. The unpredictability of vessel arrivals and the variability in loading/ unloading times intensify these issues, pushing traditional static allocation methods beyond their limits. Fortunately, the advent of smart ports has led in an era of big data availability, enabling the application of advanced deep reinforcement learning (DRL) techniques. To capitalize on this shift, this research presents a DRLbased methodology specially designed to solve the berth allocation problem with the uncertainties in vessel arrival and container handling time to enhance port resilience. A Markov Decision Process model (MDP) of the berth allocation problem is established to minimize the mean waiting time with tailored state space, rule-based action space, and reward function to address the issue. An offline training method is designed to train the agent in selecting the optimal action based on the current state of the port berth system at each decision point even in uncertain environments, deep Q-network (DQN) is implemented for this problem. Comprehensive experiments across different problem scales are conducted to validate the effectiveness and generality of the proposed method in solving berth allocation challenges under uncertain conditions. Furthermore, the trained model also performs better than other methods in different vessel congestion levels through learning.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Dynamic Resource Allocation With Deep Reinforcement Learning in Multibeam Satellite Communication
    Deng, Danhao
    Wang, Chaowei
    Pang, Mingliang
    Wang, Weidong
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2023, 12 (01) : 75 - 79
  • [22] A Deep Reinforcement Learning-Based Framework for Dynamic Resource Allocation in Multibeam Satellite Systems
    Hu, Xin
    Liu, Shuaijun
    Chen, Rong
    Wang, Weidong
    Wang, Chunting
    IEEE COMMUNICATIONS LETTERS, 2018, 22 (08) : 1612 - 1615
  • [23] Deep Reinforcement Learning-based Dynamic Bandwidth Allocation in Weighted Fair Queues of Routers
    Pan, Jinyan
    Chen, Gang
    Wu, Haoran
    Peng, Xi
    Xia, Li
    2022 IEEE 18TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2022, : 1580 - 1587
  • [24] A dynamic berth allocation model based on stochastic consideration
    Zhou, Pengfei
    Kang, Haigui
    Lin, Li
    WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 7297 - 7301
  • [25] Optimization of LoRa SF Allocation Based on Deep Reinforcement Learning
    Zhong, Han
    Ning, Lei
    Wang, Junsong
    Suo, Siliang
    Chen, Liming
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [26] Deep Reinforcement Learning Based Resource Allocation for Heterogeneous Networks
    Yang, Helin
    Zhao, Jun
    Lam, Kwok-Yan
    Garg, Sahil
    Wu, Qingqing
    Xiong, Zehui
    2021 17TH INTERNATIONAL CONFERENCE ON WIRELESS AND MOBILE COMPUTING, NETWORKING AND COMMUNICATIONS (WIMOB 2021), 2021, : 253 - 258
  • [27] Network Resource Allocation Strategy Based on Deep Reinforcement Learning
    Zhang, Shidong
    Wang, Chao
    Zhang, Junsan
    Duan, Youxiang
    You, Xinhong
    Zhang, Peiying
    IEEE OPEN JOURNAL OF THE COMPUTER SOCIETY, 2020, 1 (01): : 86 - 94
  • [28] Resource allocation algorithm for MEC based on Deep Reinforcement Learning
    Wang, Yijie
    Chen, Xin
    Chen, Ying
    Du, Shougang
    2021 IEEE INTERNATIONAL PERFORMANCE, COMPUTING, AND COMMUNICATIONS CONFERENCE (IPCCC), 2021,
  • [29] Discrete Dynamic Berth Allocation Optimization in Container Terminal Based on Deep Q-Network
    Wang, Peng
    Li, Jie
    Cao, Xiaohua
    MATHEMATICS, 2024, 12 (23)
  • [30] A dynamic programming-based matheuristic for the dynamic berth allocation problem
    Nishi, Tatsushi
    Okura, Tatsuya
    Lalla-Ruiz, Eduardo
    Voss, Stefan
    ANNALS OF OPERATIONS RESEARCH, 2020, 286 (1-2) : 391 - 410