Preserving Label-Related Domain-Specific Information for Cross-Domain Semantic Segmentation

被引:8
|
作者
Liao, Muxin [1 ]
Tian, Shishun [1 ]
Zhang, Yuhang [1 ]
Hua, Guoguang [1 ]
Zou, Wenbin [1 ]
Li, Xia [1 ]
机构
[1] Shenzhen Univ, Inst Artificial Intelligence & Adv Commun, Coll Elect & Informat Engn, Guangdong Key Lab Intelligent Informat Proc,Shenzh, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
Task analysis; Metalearning; Semantic segmentation; Frequency-domain analysis; Semantics; Training; Cutoff frequency; Domain adaptation; semantic segmentation; frequency-spectrum meta-learning framework; class-aware domain-specific memory bank; ADAPTATION;
D O I
10.1109/TITS.2024.3386743
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Unsupervised domain adaptation semantic segmentation (UDASS) methods aim to learn domain-invariant information for alleviating the distribution shift problem between the source and target domains. However, ignoring the learning of domain-specific information that is label-related may limit the class discriminability on the target domain. We argue that a good representation for the UDASS task not only contains domain-invariant information but also preserves label-related domain-specific information. In this paper, a novel frequency spectrum domain adaptation approach via meta-learning (ML-FSDA) is proposed to achieve this goal for improving the class discriminability and generalization ability. ML-FSDA contains a frequency-spectrum meta-learning framework (FMF) and a class-aware domain-specific memory bank (CDMB). Specifically, first, inspired by the observation that the high-frequency component is consistent across different domains while the low-frequency component is much more domain-specific, the FMF aims to respectively learn label-related domain-specific and domain-invariant information from low-frequency and high-frequency images in a unified framework via the meta-learning strategy. Second, the CDMB is designed to preserve the label-related domain-specific information of each class in an external memory bank while the CDMB is updated in every iteration of the meta-training stage. Finally, the CDMB is utilized to embed the label-related domain-specific information into domain-invariant information at the class level during the meta-testing stage to enhance the class discriminability on the target domain. Extensive experiments demonstrate the effectiveness of ML-FSDA on two challenging cross-domain semantic segmentation benchmarks. Notably, for the GTA5 to Cityscapes task and the SYNTHIA to Cityscapes task, the proposed ML-FSDA achieves superior performance with 77.3% mIoU and 68.8% mIoU, respectively. The source code is released at https://github.com/seabearlmx/FSL.
引用
收藏
页码:14917 / 14931
页数:15
相关论文
共 50 条
  • [31] Uncertainty-aware consistency regularization for cross-domain semantic segmentation
    Zhou, Qianyu
    Feng, Zhengyang
    Gu, Qiqi
    Cheng, Guangliang
    Lu, Xuequan
    Shi, Jianping
    Ma, Lizhuang
    Computer Vision and Image Understanding, 2022, 221
  • [32] A Cross-Domain Coupling Network for Semantic Segmentation of Remote Sensing Images
    Li, Xin
    Xu, Feng
    Tao, Feifei
    Tong, Yao
    Gao, Hongmin
    Liu, Fan
    Chen, Ziqi
    Lyu, Xin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [33] Confidence-and-Refinement Adaptation Model for Cross-Domain Semantic Segmentation
    Zhang, Xiaohong
    Chen, Yi
    Shen, Ziyi
    Shen, Yuming
    Zhang, Haofeng
    Zhang, Yudong
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (07) : 9529 - 9542
  • [34] Context Information and Fragments Based Cross-Domain Word Segmentation
    Huang Degen
    Tong Deqin
    CHINA COMMUNICATIONS, 2012, 9 (03) : 49 - 57
  • [35] Bi-criteria risk analysis of domain-specific and cross-domain changes in complex systems
    Doerr, Kenneth H.
    Kang, Keebom
    COMPUTERS & INDUSTRIAL ENGINEERING, 2014, 73 : 51 - 60
  • [36] Segmentation Fusion for Building Detection Using Domain-Specific Information
    Karadag, Ozge Oztimur
    Senaras, Caglar
    Vural, Fatos T. Yarman
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (07) : 3305 - 3315
  • [37] Learning Instance-Specific Adaptation for Cross-Domain Segmentation
    Zou, Yuliang
    Zhang, Zizhao
    Li, Chun-Liang
    Zhang, Han
    Pfister, Tomas
    Huang, Jia-Bin
    COMPUTER VISION - ECCV 2022, PT XXXIII, 2022, 13693 : 459 - 476
  • [38] Cross-Domain and Cross-Modal Knowledge Distillation in Domain Adaptation for 3D Semantic Segmentation
    Li, Miaoyu
    Zhang, Yachao
    Xie, Yuan
    Gao, Zuodong
    Li, Cuihua
    Zhang, Zhizhong
    Qu, Yanyun
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 3829 - 3837
  • [39] Semantic-aware short path adversarial training for cross-domain semantic segmentation
    Shan, Yuhu
    Chew, Chee Meng
    Lu, Wen Feng
    NEUROCOMPUTING, 2020, 380 : 125 - 132
  • [40] Privacy-Preserving and Cross-Domain Human Sensing by Federated Domain Adaptation with Semantic Knowledge Correction
    Gong, Kaijie
    Gao, Yi
    Dong, Wei
    PROCEEDINGS OF THE ACM ON INTERACTIVE MOBILE WEARABLE AND UBIQUITOUS TECHNOLOGIES-IMWUT, 2024, 8 (01):