Binary and Ternary Classifiers to Detect COVID-19 Patients Using Chest X-ray Images: An Efficient Layered CNN Approach

被引:0
|
作者
Mittal, Mamta [1 ]
Chauhan, Nitin Kumar [2 ]
Ghansiyal, Adrija [3 ]
Hemanth, D. Jude [4 ]
机构
[1] Delhi Skill & Entrepreneurship Univ, New Delhi, India
[2] Indore Inst Sci & Technol, Dept ECE, Indore, India
[3] HSBC Technol India, Wealth & Personal Banking WPB IT, Pune, India
[4] Karunya Inst Technol & Sci, Dept ECE, Coimbatore, India
关键词
X-ray images; COVID-19; Binary Classifier; Ternary Classifier; Convolutional Neural Network; CORONAVIRUS;
D O I
10.1007/s00354-024-00254-5
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Coronavirus disease 2019, i.e., COVID-19, an emerging contagious disease with human-to-human transmission, first appeared at the end of year 2019. The sudden demand for disease diagnostic kits prompted researchers to shift their focus toward developing solutions that could assist in identifying COVID-19 using available resources. Therefore, it is imperative to develop a high-accuracy system that makes use of Artificial Intelligence and its tools considering its contribution to computer vision. The time consumed to diagnose test outcomes is to be taken care of as a crucial aspect of an efficient model. To address the global challenges faced by the COVID-19 pandemic, this study proposed two deep learning models developed for automatic COVID-19 detection and distinguish it from pneumonia, another common lung disease. The proposed designs implement layered convolutional neural networks and are trained on a data set of 1824 chest X-rays for binary classification (COVID-19 and normal) and 2736 chest X-rays for ternary classification (COVID-19, normal, and pneumonia). The input images and hyper-parameters in the convolution layers are fine-tuned during the model training phase. The observations show that the proposed models have achieved a better performance as compared to their earlier contemporaries' approaches, resulting in accuracy, precision, recall, and F-score of 98.91%, 98.5%, 98.5%, and 99% for binary-class and 95.99%, 96.3%, 96%, and 96.33% for ternary-class classifiers, respectively. The presented architectures have been built from scratch, thus with the implemented convolutional layered architecture, they were successful in providing more efficient and early diagnosis of the disease.
引用
收藏
页码:715 / 737
页数:23
相关论文
共 50 条
  • [11] Concat_CNN: A Model to Detect COVID-19 from Chest X-ray Images with Deep Learning
    Saha P.
    Neogy S.
    SN Computer Science, 3 (4)
  • [12] COVID-19 Diagnosis Using CNN-Based Classification of Chest X-Ray Images
    Ferariu, Lavinia
    Hardulea, Catalin-Marian
    2021 INTERNATIONAL CONFERENCE ON E-HEALTH AND BIOENGINEERING (EHB 2021), 9TH EDITION, 2021,
  • [13] COVID-19 Detection in Chest X-ray Images Using a New Channel Boosted CNN
    Khan, Saddam Hussain
    Sohail, Anabia
    Khan, Asifullah
    Lee, Yeon-Soo
    DIAGNOSTICS, 2022, 12 (02)
  • [14] Identification of COVID-19 using chest X-Ray images
    Patnaik, Vijaya
    Mohanty, Monalisa
    Subudhi, Asit Kumar
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2023, 11 (06): : 2130 - 2144
  • [15] COVID-19 Detection on Chest X-ray Images with the Proposed Model Using Artificial Intelligence and Classifiers
    Yildirim, Muhammed
    Eroglu, Orkun
    Eroglu, Yesim
    Cinar, Ahmet
    Cengil, Emine
    NEW GENERATION COMPUTING, 2022, 40 (04) : 1077 - 1091
  • [16] COVID-19 Detection on Chest X-ray Images with the Proposed Model Using Artificial Intelligence and Classifiers
    Muhammed Yildirim
    Orkun Eroğlu
    Yeşim Eroğlu
    Ahmet Çinar
    Emine Cengil
    New Generation Computing, 2022, 40 : 1077 - 1091
  • [17] A topological approach for the pattern analysis on chest X-Ray images of COVID-19 Patients
    Lopez-Reyes, Valente
    Cosio-Leon, M. A.
    Aviles-Rodriguez, G. J.
    Martinez-Vargas, Anabel
    Romo-Cardenas, G.
    MEDICAL IMAGING 2021: PHYSICS OF MEDICAL IMAGING, 2021, 11595
  • [18] COVID-19 Detection in Chest X-ray Images using a Deep Learning Approach
    Saiz, Fatima A.
    Barandiaran, Inigo
    INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2020, 6 (02): : 11 - 14
  • [19] A Deep Learning Approach for Detecting Covid-19 Using the Chest X-Ray Images
    Sadeghi, Fatemeh
    Rostami, Omid
    Yi, Myung-Kyu
    Hwang, Seong Oun
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (01): : 751 - 768
  • [20] COVID-19 detection on Chest X-ray images: A comparison of CNN architectures and ensembles
    Breve, Fabricio Aparecido
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 204