Cylindrical-electrode triboelectric nanogenerator for low-speed wind energy harvesting

被引:11
|
作者
Mudgal, Trapti [1 ]
Tiwari, Manas [1 ]
Bharti, Deepak [1 ]
机构
[1] Malaviya Natl Inst Technol, Dept Elect & Commun Engn, Jaipur 302017, Rajasthan, India
关键词
Triboelectric nanogenerators; Wind energy harvesting; Cylindrical electrode; Low -speed wind energy; SENSOR;
D O I
10.1016/j.nanoen.2024.109388
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the state-of-the-art turbine-based technology, an effective wind energy harvesting is feasible only with wind speeds higher than 3 m/s. For convenient energy harvesting at lower wind speeds, a triboelectric nanogenerator (TENG) with a hollow cylindrical top electrode made of aluminum foil has been proposed in this study, which is potent to scavenge the wind energy at very low speed of 1.5 m/s. The hollow and light-weight design of the cylindrical electrode (CE) enhances the levels of air flow-induced fluttering, which aids the CE-TENG to achieve an average power density of similar to 39 mW/m(2) at a low wind speed of 1.5 m/s, which is remarkable among its rivals in terms of relative performance and simplicity. In addition to driving the low-power external electronics with low-speed wind energy and harvesting of low-speed natural breeze energy, CE-TENG has been also demonstrated to scavenge energy from the air-flow generated from movement of nearby traffic. This work suggests that capabilities of TENGs can be extended with unique design strategies and optimizations to attain high efficiency for wind energy harvesting in low-speed regimes.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Calliopsis structure-based triboelectric nanogenerator for harvesting wind energy and self-powerd wind speed/direction sensor
    Zhao, Chenghan
    Wu, Yinghui
    Dai, Xingyi
    Han, Jiancheng
    Dong, Biqin
    Huang, Long-Biao
    MATERIALS & DESIGN, 2022, 221
  • [42] An ultrathin stretchable triboelectric nanogenerator with coplanar electrode for energy harvesting and gesture sensing
    Chen, Xuexian
    Song, Yu
    Chen, Haotian
    Zhang, Jinxin
    Zhang, Haixia
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (24) : 12361 - 12368
  • [43] Interdigital electrode based triboelectric nanogenerator for effective energy harvesting from water
    Yun, Byung Kil
    Kim, Hyun Soo
    Ko, Young Joon
    Murillo, Gonzalo
    Jung, Jong Hoon
    NANO ENERGY, 2017, 36 : 233 - 240
  • [44] Leaves based triboelectric nanogenerator (TENG) and TENG tree for wind energy harvesting
    Feng, Yange
    Zhang, Liqiang
    Zheng, Youbin
    Wang, Daoai
    Zhou, Feng
    Liu, Weimin
    NANO ENERGY, 2019, 55 : 260 - 268
  • [45] Magnetic switch structured triboelectric nanogenerator for continuous and regular harvesting of wind energy
    Liu, Shiming
    Li, Xiang
    Wang, Yuqi
    Yang, Yanfei
    Meng, Lixia
    Cheng, Tinghai
    Wang, Zhong Lin
    NANO ENERGY, 2021, 83
  • [46] Study of wind energy harvesting based on rolling bearing type triboelectric nanogenerator
    Yan, Jin
    Tang, Zhi
    Zhang, Cheng
    Long, Yanghui
    Li, Jiangfeng
    Sheng, Yuxuan
    ENERGY REPORTS, 2024, 12 : 3690 - 3699
  • [47] Nutshell Powder-Based Green Triboelectric Nanogenerator for Wind Energy Harvesting
    Zhang, Ruijuan
    Xia, Ruihuan
    Cao, Xia
    Wang, Ning
    ADVANCED MATERIALS INTERFACES, 2022, 9 (21)
  • [48] Bladeless Wind Turbine Triboelectric Nanogenerator for Effectively Harvesting Random Gust Energy
    Zhu, Mingkang
    Zhu, Jianyang
    Zhu, Jinzhi
    Zhao, Zilong
    Li, Hengyu
    Cheng, Xiaojun
    Wang, Zhong Lin
    Cheng, Tinghai
    ADVANCED ENERGY MATERIALS, 2024, 14 (33)
  • [49] Triboelectric Nanogenerator for Harvesting Wind Energy and as Self-Powered Wind Vector Sensor System
    Yang, Ya
    Zhu, Guang
    Zhang, Hulin
    Chen, Jun
    Zhong, Xiandai
    Lin, Zong-Hong
    Su, Yuanjie
    Bai, Peng
    Wen, Xiaonan
    Wang, Zhong Lin
    ACS NANO, 2013, 7 (10) : 9461 - 9468
  • [50] Gridding Triboelectric Nanogenerator for Raindrop Energy Harvesting
    Cheng, Bolang
    Niu, Shaoshuai
    Xu, Qi
    Wen, Juan
    Bai, Suo
    Qin, Yong
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (50) : 59975 - 59982