One-Dimensional Lazy Quantum Walk in Ternary System

被引:5
|
作者
Saha A. [1 ,2 ]
Mandal B. [2 ,3 ]
Saha D. [2 ]
Chakrabarti A. [2 ]
机构
[1] Atos, Pune
[2] A. K. Choudhury School of Information Technology, University of Calcutta, Kolkata
[3] Regent Institute of Science and Technology, Barrackpore
来源
Saha, Amit (abamitsaha@gmail.com) | 1600年 / Institute of Electrical and Electronics Engineers Inc.卷 / 02期
关键词
Lazy quantum walk (LQW); quantum circuit; quantum walk; ternary quantum system;
D O I
10.1109/TQE.2021.3074707
中图分类号
学科分类号
摘要
Quantum walks play an important role for developing quantum algorithms and quantum simulations. Here, we introduce a first of its kind one-dimensional lazy quantum walk in the ternary quantum domain and show its equivalence for circuit realization in ternary quantum logic. Using an appropriate logical mapping of the position space on which a walker evolves onto the multiqutrit states, we present efficient quantum circuits for the implementation of lazy quantum walks in one-dimensional position space in ternary quantum system. We also address scalability in terms of n-qutrit ternary system with example circuits for a three-qutrit state space. © 2021 by the Author(s).
引用
收藏
相关论文
共 50 条
  • [41] On the Height of One-Dimensional Random Walk
    Abdelkader, Mohamed
    MATHEMATICS, 2023, 11 (21)
  • [42] Statistics of the One-Dimensional Riemann Walk
    A. M. Mariz
    F. van Wijland
    H. J. Hilhorst
    S. R. Gomes Júnior
    C. Tsallis
    Journal of Statistical Physics, 2001, 102 : 259 - 283
  • [43] Erosion by a one-dimensional random walk
    Chisholm, Rebecca H.
    Hughes, Barry D.
    Landman, Kerry A.
    PHYSICAL REVIEW E, 2014, 90 (02):
  • [44] Limitations of discrete-time quantum walk on a one-dimensional infinite chain
    Lin, Jia-Yi
    Zhu, Xuanmin
    Wu, Shengjun
    PHYSICS LETTERS A, 2018, 382 (13) : 899 - 903
  • [45] Ito formula for one-dimensional continuous-time quantum random walk
    Kang, Yuanbao
    Wang, Caishi
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 414 : 154 - 162
  • [46] Observation of quasiperiodic dynamics in a one-dimensional quantum walk of single photons in space
    Xue, Peng
    Qin, Hao
    Tang, Bao
    Sanders, Barry C.
    NEW JOURNAL OF PHYSICS, 2014, 16
  • [47] WEAK LIMIT THEOREM FOR A ONE-DIMENSIONAL SPLIT-STEP QUANTUM WALK
    Fuda, Toru
    Funakawa, Daiju
    Suzuki, Akito
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 64 (2-3): : 157 - 165
  • [48] Survival Probability in a Quantum Walk on a One-Dimensional Lattice with Partially Absorbing Traps
    Gonulol, Meltem
    Aydiner, Ekrem
    Shikano, Yutaka
    Mustecaplioglu, Ozgur E.
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2013, 10 (07) : 1596 - 1600
  • [49] Quantum hydrodynamic modes in one-dimensional polaron system
    Tanaka, Satoshi
    Kanki, Kazuki
    Petrosky, Tomio
    JOURNAL OF LUMINESCENCE, 2008, 128 (5-6) : 978 - 981
  • [50] Quantum Hall effect in a one-dimensional dynamical system
    Dahlhaus, J. P.
    Edge, J. M.
    Tworzydlo, J.
    Beenakker, C. W. J.
    PHYSICAL REVIEW B, 2011, 84 (11)