Service Function Chaining in LEO Satellite Networks via Multi-Agent Reinforcement Learning

被引:2
|
作者
Doan, Khai [1 ]
Avgeris, Marios [1 ]
Leivadeas, Aris [2 ,3 ]
Lambadaris, Ioannis [1 ]
Shin, Wonjae [3 ]
机构
[1] Carleton Univ, Dept Syst & Comp Engn, Ottawa, ON, Canada
[2] Ecole Technol Super, Dept Software & IT Engn, Montreal, PQ, Canada
[3] Korea Univ, Sch Elect Engn, Seoul, South Korea
关键词
Network Function Virtualization; Service Function Chaining; Satellite Networks; Multi-Agent Reinforcement Learning;
D O I
10.1109/GLOBECOM54140.2023.10437296
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Low-earth-orbit satellite networks (LSNs) offer an enhanced global connectivity and a wide range of applications such as disaster response and military operations, among others. Each specific application can be represented by a service function chain (SFC) in which each function is considered as a task in the application. Our objective is to optimize the long-term system performance by minimizing the average end-toend delay of SFC deployments in LSNs. To achieve this, we formulate a dynamic programming (DP) problem to derive an optimal placement policy. To overcome the computational intractability, the need for statistical knowledge of SFC requests, and centralized decision-making challenges, we present amulti-agent Q-learning approach where satellites act as independent agents. To facilitate performance convergence in non-stationary agents' environments, we let agents to collaborate by sharing designated learning parameters. In addition, agents update their Q-tables via two distinct rules depending on selected actions. Extensive experimentation shows that our approach achieves convergence and performance relatively close to the optimum obtained by solving the formulated DP equation.
引用
收藏
页码:7145 / 7150
页数:6
相关论文
共 50 条
  • [31] A multi-agent reinforcement learning approach to dynamic service composition
    Wang, Hongbing
    Wang, Xiaojun
    Hu, Xingguo
    Zhang, Xingzhi
    Gu, Mingzhu
    INFORMATION SCIENCES, 2016, 363 : 96 - 119
  • [32] Effective service composition using multi-agent reinforcement learning
    Wang, Hongbing
    Wang, Xiaojun
    Zhang, Xingzhi
    Yu, Qi
    Hu, Xingguo
    KNOWLEDGE-BASED SYSTEMS, 2016, 92 : 151 - 168
  • [33] Multi-Agent Reinforcement Learning for Power Control in Wireless Networks via Adaptive Graphs
    Amorosa, Lorenzo Mario
    Skocaj, Marco
    Verdone, Roberto
    Gunduz, Deniz
    ICC 2024 - IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2024, : 2968 - 2973
  • [34] Stabilizing Voltage in Power Distribution Networks via Multi-Agent Reinforcement Learning with Transformer
    Wang, Minrui
    Feng, Mingxiao
    Zhou, Wengang
    Li, Houqiang
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 1899 - 1909
  • [35] Multi-Agent and Multi-Target Reinforcement Learning for Satellite Sensor Tasking
    Saeed, Amir K.
    Holguin, Francisco
    Yasin, Alhassan S.
    Johnson, Benjamin A.
    Rodriguez, Benjamin M.
    2024 IEEE AEROSPACE CONFERENCE, 2024,
  • [36] Transform networks for cooperative multi-agent deep reinforcement learning
    Hongbin Wang
    Xiaodong Xie
    Lianke Zhou
    Applied Intelligence, 2023, 53 : 9261 - 9269
  • [37] Transform networks for cooperative multi-agent deep reinforcement learning
    Wang, Hongbin
    Xie, Xiaodong
    Zhou, Lianke
    APPLIED INTELLIGENCE, 2023, 53 (08) : 9261 - 9269
  • [38] Multi-Agent Reinforcement Learning for Spectrum Sharing in Vehicular Networks
    Liang, Le
    Ye, Hao
    Li, Geoffrey Ye
    2019 IEEE 20TH INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (SPAWC 2019), 2019,
  • [39] Efficient Communications for Multi-Agent Reinforcement Learning in Wireless Networks
    Lv, Zefang
    Du, Yousong
    Chen, Yifan
    Xiao, Liang
    Han, Shuai
    Ji, Xiangyang
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 583 - 588
  • [40] Multi-agent reinforcement learning algorithm based on neural networks
    Tang, Lianggui
    Yang, Hu
    An, Bo
    Cheng, Daijie
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2006, 13E : 1569 - 1574