Atmospheric pressure microwave (915 MHz) plasma for hydrogen production from steam reforming of ethanol

被引:0
|
作者
Miotk, Robert [1 ]
Hrycak, Bartosz [1 ]
Czylkowski, Dariusz [1 ]
Jasinski, Mariusz [1 ]
Dors, Miroslaw [1 ]
Mizeraczyk, Jerzy [2 ]
机构
[1] Polish Acad Sci, Inst Fluid Flow Machinery, Fiszera 14, PL-80231 Gdansk, Poland
[2] Gdyn Maritime Univ, Dept Marine Elect, Morska 81-87, PL-81225 Gdynia, Poland
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Hydrogen production; Ethanol; Microwave plasma; 915; MHz; Energy yield; Simulations of the distribution of the electric field; DISCHARGE PLASMA; METHANOL DECOMPOSITION; H-2;
D O I
10.1038/s41598-024-65874-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This work presents experimental results on the energy efficiency in hydrogen production using atmospheric microwave plasma (915 MHz) through steam reforming of ethanol. Ethanol was chosen as a liquid hydrogen carrier due to its high hydrogen atom content, low cost, and wide availability. The experimental work began with the maximization of an energy efficiency of the used microwave plasma source. The process of maximization involved determining a position of a movable plunger that ensures the most efficient transfer of microwave energy from a microwave source to the generated plasma in the microwave plasma source. The aim of the investigations was to test the following working conditions of the microwave plasma source: absorbed microwave power PA by the generated plasma (up to 5.4 kW), the carrier gas volumetric flow rate (up to 3900 Nl/h), and the amount of the introduced ethanol vapours on the efficiency of hydrogen production (up to 2.4 kg/h). In the range of tested working conditions, the highest energy yield for hydrogen production achieved a rate of 26.9 g(H2)/kWh, while the highest hydrogen production was 99.3 g(H2)/h.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Thermodynamic analysis of steam reforming of glycerol for hydrogen production at atmospheric pressure
    Ammaru Ismaila
    Xueli Chen
    Xin Gao
    Xiaolei Fan
    Frontiers of Chemical Science and Engineering, 2021, 15 (01) : 60 - 71
  • [22] Spectroscopic study of atmospheric pressure 915 MHz microwave plasma at high argon flow rate
    Miotk, R.
    Hrycak, B.
    Jasinski, M.
    Mizeraczyk, J.
    12TH HIGH-TECH PLASMA PROCESSES CONFERENCE (HTPP-12), 2012, 406
  • [23] Production of hydrogen-rich syngas from methane reforming by steam microwave plasma
    Choi, Dae Hyun
    Chun, Se Min
    Ma, Suk Hwal
    Hong, Yong Cheol
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2016, 34 : 286 - 291
  • [24] Hydrogen production through steam reforming of ethanol
    Mattos, Lisiane Veiga
    Jacobs, Gary
    Davis, Burtron H.
    Noronha, Fabio B.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [25] Steam-reforming of ethanol for hydrogen production
    Ahmed Bshish
    Zahira Yaakob
    Binitha Narayanan
    Resmi Ramakrishnan
    Ali Ebshish
    Chemical Papers, 2011, 65 : 251 - 266
  • [26] Steam-reforming of ethanol for hydrogen production
    Bshish, Ahmed
    Yakoob, Zahira
    Narayanan, Binitha
    Ramakrishnan, Resmi
    Ebshish, Ali
    CHEMICAL PAPERS, 2011, 65 (03) : 251 - 266
  • [27] Atmospheric pressure microwave plasma source for hydrogen production
    Jasinski, M.
    Czylkowski, D.
    Hrycak, B.
    Dors, M.
    Mizeraczyk, J.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (26) : 11473 - 11483
  • [28] Hydrogen production from nonthermal plasma ethanol reforming
    Mallinson, Richard G.
    Hoang, Trung
    Zhu, Xinli
    Lobban, Lance L.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 238
  • [29] FUEL 269-Hydrogen production by steam reforming of ethanol at elevated pressure
    Lee, Sheldon H. D.
    Ahmed, Shabbir
    Ahluwalia, Rajesh K.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2007, 234
  • [30] Hydrogen Production from Ethanol Decomposition by Two Microwave Atmospheric Pressure Plasma Sources: Surfatron and TIAGO Torch
    Rocío Rincón
    Margarita Jiménez
    José Muñoz
    Manuel Sáez
    María Dolores Calzada
    Plasma Chemistry and Plasma Processing, 2014, 34 : 145 - 157