Projectively and affinely invariant PDEs on hypersurfaces

被引:0
|
作者
Alekseevsky, Dmitri [1 ,2 ]
Manno, Gianni [3 ]
Moreno, Giovanni [4 ]
机构
[1] Inst Informat Transmiss Problems, Dept Algebra & Number Theory, Moscow, Russia
[2] Univ Hradec Kralove, Fac Sci, Hradec Kralove, Czech Republic
[3] Politecn Torino, Dipartimento Matemat G L Lagrange, Turin, Italy
[4] Univ Warsaw, Fac Phys, Dept Math Methods Phys, Warsaw, Poland
关键词
Homogeneous manifolds; Lie symmetries of PDEs; G-invariant PDEs; Jet spaces;
D O I
10.1017/S0013091524000233
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In Communications in Contemporary Mathematics 24 3, (2022),the authors have developed a method for constructing G-invariant partial differential equations (PDEs) imposed on hypersurfaces of an $(n+1)$-dimensional homogeneous space $G/H$, under mild assumptions on the Lie group G. In the present paper, the method is applied to the case when $G=\mathsf{PGL}(n+1)$ (respectively, $G=\mathsf{Aff}(n+1)$) and the homogeneous space $G/H$ is the $(n+1)$-dimensional projective $\mathbb{P}<^>{n+1}$ (respectively, affine $\mathbb{A}<^>{n+1}$) space, respectively. The main result of the paper is that projectively or affinely invariant PDEs with n independent and one unknown variables are in one-to-one correspondence with invariant hypersurfaces of the space of trace-free cubic forms in n variables with respect to the group $\mathsf{CO}(d,n-d)$ of conformal transformations of $\mathbb{R}<^>{d,n-d}$.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] Matching of affinely invariant regions for visual servoing
    Tuytelaars, T
    Van Gool, L
    D'haene, L
    Koch, R
    ICRA '99: IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-4, PROCEEDINGS, 1999, : 1601 - 1606
  • [22] INVARIANT ANALYTIC HYPERSURFACES
    HUCKLEBERRY, AT
    MARGULIS, GA
    INVENTIONES MATHEMATICAE, 1983, 71 (01) : 235 - 240
  • [23] The projectively Hurewicz property is t-invariant
    Osipov, Alexander, V
    FILOMAT, 2023, 37 (28) : 9613 - 9616
  • [24] Projectively and conformally invariant star-products
    Duval, C
    El Gradechi, AM
    Ovsienko, V
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 244 (01) : 3 - 27
  • [25] Projectively and Conformally Invariant Star-Products
    C. Duval
    A.M. El Gradechi
    V. Ovsienko
    Communications in Mathematical Physics, 2004, 244 : 3 - 27
  • [26] Formula for the projectively invariant quantization on degree three
    Bouarroudj, S
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (04): : 343 - 346
  • [27] Projectively invariant decomposition and recognition of planar shapes
    Carlsson, S
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 1996, 17 (02) : 193 - 209
  • [28] Projectively induced rotation invariant Kahler metrics
    Salis, Filippo
    ARCHIV DER MATHEMATIK, 2017, 109 (03) : 285 - 292
  • [29] Separable and vector groups whose projectively invariant subgroups are fully invariant
    Chekhlov, A. R.
    SIBERIAN MATHEMATICAL JOURNAL, 2009, 50 (04) : 748 - 756
  • [30] PROJECTIVELY INVARIANT INTERSECTION DETECTIONS FOR SOLID MODELING
    NIIZEKI, M
    YAMAGUCHI, F
    ACM TRANSACTIONS ON GRAPHICS, 1994, 13 (03): : 277 - 299