Projectively and affinely invariant PDEs on hypersurfaces

被引:0
|
作者
Alekseevsky, Dmitri [1 ,2 ]
Manno, Gianni [3 ]
Moreno, Giovanni [4 ]
机构
[1] Inst Informat Transmiss Problems, Dept Algebra & Number Theory, Moscow, Russia
[2] Univ Hradec Kralove, Fac Sci, Hradec Kralove, Czech Republic
[3] Politecn Torino, Dipartimento Matemat G L Lagrange, Turin, Italy
[4] Univ Warsaw, Fac Phys, Dept Math Methods Phys, Warsaw, Poland
关键词
Homogeneous manifolds; Lie symmetries of PDEs; G-invariant PDEs; Jet spaces;
D O I
10.1017/S0013091524000233
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In Communications in Contemporary Mathematics 24 3, (2022),the authors have developed a method for constructing G-invariant partial differential equations (PDEs) imposed on hypersurfaces of an $(n+1)$-dimensional homogeneous space $G/H$, under mild assumptions on the Lie group G. In the present paper, the method is applied to the case when $G=\mathsf{PGL}(n+1)$ (respectively, $G=\mathsf{Aff}(n+1)$) and the homogeneous space $G/H$ is the $(n+1)$-dimensional projective $\mathbb{P}<^>{n+1}$ (respectively, affine $\mathbb{A}<^>{n+1}$) space, respectively. The main result of the paper is that projectively or affinely invariant PDEs with n independent and one unknown variables are in one-to-one correspondence with invariant hypersurfaces of the space of trace-free cubic forms in n variables with respect to the group $\mathsf{CO}(d,n-d)$ of conformal transformations of $\mathbb{R}<^>{d,n-d}$.
引用
收藏
页数:26
相关论文
共 50 条