EVALUATING MONOCULAR DEPTH ESTIMATION METHODS

被引:0
|
作者
Padkan, N. [1 ,2 ]
Trybala, P. [1 ]
Battisti, R. [1 ]
Remondino, F. [1 ]
Bergeret, C. [1 ,3 ]
机构
[1] Bruno Kessler Fdn FBK, 3D Opt Metrol 3DOM Unit, Trento, Italy
[2] Univ Udine, Dept Math Comp Sci & Phys, Udine, Italy
[3] ENSG, Paris, France
关键词
Monocular Depth; Photogrammetry; Deep Learning; 3D; benchmark;
D O I
10.5194/isprs-archives-XLVIII-1-W3-2023-137-2023
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Depth estimation from monocular images has become a prominent focus in photogrammetry and computer vision research. Monocular Depth Estimation (MDE), which involves determining depth from a single RGB image, offers numerous advantages, including applications in simultaneous localization and mapping (SLAM), scene comprehension, 3D modeling, robotics, and autonomous driving. Depth information retrieval becomes especially crucial in situations where other sources like stereo images, optical flow, or point clouds are not available. In contrast to traditional stereo or multi-view methods, MDE techniques require fewer computational resources and smaller datasets. This research work presents a comprehensive analysis and evaluation of some state-of-the-art MDE methods, considering their ability to infer depth information in terrestrial images. The evaluation includes quantitative assessments using ground truth data, including 3D analyses and inference time. [GRAPHICS] .
引用
收藏
页码:137 / 144
页数:8
相关论文
共 50 条
  • [1] Self-supervised monocular depth estimation with direct methods
    Wang, Haixia
    Sun, Yehao
    Wu, Q. M. Jonathan
    Lu, Xiao
    Wang, Xiuling
    Zhang, Zhiguo
    NEUROCOMPUTING, 2021, 421 : 340 - 348
  • [2] Self-supervised monocular depth estimation with direct methods
    Wang H.
    Sun Y.
    Wu Q.M.J.
    Lu X.
    Wang X.
    Zhang Z.
    Neurocomputing, 2021, 421 : 340 - 348
  • [3] The Monocular Depth Estimation Challenge
    Spencer, Jaime
    Qian, C. Stella
    Russell, Chris
    Hadfield, Simon
    Graf, Erich
    Adams, Wendy
    Schofield, Andrew J.
    Elder, James
    Bowden, Richard
    Cong, Heng
    Mattoccia, Stefano
    Poggi, Matteo
    Suri, Zeeshan Khan
    Tang, Yang
    Tosi, Fabio
    Wang, Hao
    Zhang, Youmin
    Zhang, Yusheng
    Zhao, Chaoqiang
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WORKSHOPS (WACVW), 2023, : 623 - 632
  • [4] Perceptual Monocular Depth Estimation
    Pan, Janice
    Bovik, Alan C.
    NEURAL PROCESSING LETTERS, 2021, 53 (02) : 1205 - 1228
  • [5] Perceptual Monocular Depth Estimation
    Janice Pan
    Alan C. Bovik
    Neural Processing Letters, 2021, 53 : 1205 - 1228
  • [6] Sparse depth densification for monocular depth estimation
    Zhen Liang
    Tiyu Fang
    Yanzhu Hu
    Yingjian Wang
    Multimedia Tools and Applications, 2024, 83 : 14821 - 14838
  • [7] Depth Map Decomposition for Monocular Depth Estimation
    Jun, Jinyoung
    Lee, Jae-Han
    Lee, Chul
    Kim, Chang-Su
    COMPUTER VISION - ECCV 2022, PT II, 2022, 13662 : 18 - 34
  • [8] Sparse depth densification for monocular depth estimation
    Liang, Zhen
    Fang, Tiyu
    Hu, Yanzhu
    Wang, Yingjian
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (05) : 14821 - 14838
  • [9] Accurate detection and depth estimation of table grapes and peduncles for robot harvesting, combining monocular depth estimation and CNN methods
    Coll-Ribes, Gabriel
    Torres-Rodriguez, Ivan J.
    Grau, Antoni
    Guerra, Edmundo
    Sanfeliu, Alberto
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2023, 215
  • [10] MONOCULAR DEPTH ESTIMATION IN FOREST ENVIRONMENTS
    Hristova, H.
    Abegg, M.
    Fischer, C.
    Rehush, N.
    XXIV ISPRS CONGRESS IMAGING TODAY, FORESEEING TOMORROW, COMMISSION II, 2022, 43-B2 : 1017 - 1023