The Gel'fand spaces of discrete Beurling algebras on Z2 + and Z2

被引:0
|
作者
Dedania, H.V. [1 ]
Goswami, V.N. [1 ]
机构
[1] Department of Mathematics, Sardar Patel University, Gujarat, Vallabh Vidyanagar,388120, India
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1166 / 1182
相关论文
共 50 条
  • [41] The fate of discrete torsion on resolved heterotic Z2 x Z2 orbifolds using (0,2) GLSMs
    Faraggi, A. E.
    Nibbelink, S. Groot
    Heredia, M. Hurtado
    NUCLEAR PHYSICS B, 2023, 988
  • [42] Z2 x Z2 symmetry and Z4 Berry phase of bosonic ladders
    Kuno, Yoshihito
    Hatsugai, Yasuhiro
    PHYSICAL REVIEW A, 2023, 108 (01)
  • [43] Grand unification of flavor by orbifold twisting Z2 and Z2 x Z12
    Kim, JE
    FIRST INTERNATIONAL CONFERENCE ON STRING PHENOMENOLOGY, 2003, : 173 - 178
  • [44] RECURSION OPERATORS FOR RATIONAL BUNDLE ON sl (3; C) WITH Z2 x Z2 x Z2 REDUCTION OF MIKHAILOV TYPE
    Yanovski, Alexandar
    PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL CONFERENCE ON GEOMETRY, INTEGRABILITY AND QUANTIZATION, 2015, : 301 - 311
  • [45] Quantum phase transitions out of a Z2 x Z2 topological phase
    Jahromi, Saeed S.
    Masoudi, S. Farhad
    Kargarian, Mehdi
    Schmidt, Kai Phillip
    PHYSICAL REVIEW B, 2013, 88 (21)
  • [46] Modular Symmetries, Threshold Corrections and Moduli for Z2 x Z2 Orbifolds
    Bailin, D.
    Love, A.
    Sabra, W. A.
    Thomas, S.
    Comptes Rendus De L'Academie Des Sciences. Serie I, Mathematique, 1994, 319
  • [47] Five-dimensional Bieberbach groups with holonomy group Z2 ⊕ Z2
    Rossetti, JP
    Tirao, P
    GEOMETRIAE DEDICATA, 1999, 77 (02) : 149 - 172
  • [48] Intersecting D-branes on shift Z2 x Z2 orientifolds
    Blumenhagen, Ralph
    Plauschinn, Erik
    JOURNAL OF HIGH ENERGY PHYSICS, 2006, (08):
  • [49] Towards machine learning in the classification of Z2 x Z2 orbifold compactifications
    Faraggi, A. E.
    Harries, G.
    Percival, B.
    Rizos, J.
    6TH SYMPOSIUM ON PROSPECTS IN THE PHYSICS OF DISCRETE SYMMETRIES - DISCRETE 2018, 2020, 1586
  • [50] On the dimension of H*((Z2)xt , Z2) as a module over Steenrod ring
    Dang Vo Phuc
    TOPOLOGY AND ITS APPLICATIONS, 2021, 303