Integration of Unmanned Aerial Vehicle and Multispectral Sensor for Paddy Growth Monitoring Application: A Review

被引:0
|
作者
Mohidem, Nur Adibah [1 ,2 ]
Jaafar, Suhami [2 ]
Che'Ya, Nik Norasma [2 ,3 ,4 ,5 ]
机构
[1] Univ Sains Islam Malaysia, Fac Med & Hlth Sci, Dept Primary Hlth Care, Publ Hlth Unit, Nilai 71800, Negeri Sembilan, Malaysia
[2] Univ Putra Malaysia, Fac Agr, Dept Agr Technol, Serdang 43400, Selangor, Malaysia
[3] Univ Putra Malaysia, Ctr Adv Lightning Power & Energy Res ALPER, Serdang 43400, Selangor, Malaysia
[4] Univ Putra Malaysia, Fac Engn, Smart Farming Technol Res Ctr SFTRC, Serdang 43400, Selangor, Malaysia
[5] Univ Putra Malaysia, Inst Plantat Studies, Lab Plantat Syst Technol & Mechanizat PSTM, Serdang 43400, Selangor, Malaysia
来源
关键词
Multispectral; normalised difference vegetation index; paddy field; soil plant analysis development; unmanned aerial vehicle; VEGETATION INDEXES; MAIZE; UAV; RICE; AREA; SOIL; AGRICULTURE; IRRIGATION; RESOLUTION; IMAGES;
D O I
10.47836/pjst.32.2.04
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Using a conventional approach via visual observation on the ground, farmers encounter difficulties monitoring the entire paddy field area, and it is time-consuming to do manually. The application of unmanned aerial vehicles (UAVs) could help farmers optimise inputs such as water and fertiliser to increase yield, productivity, and quality, allowing them to manage their operations at lower costs and with minimum environmental impact. Therefore, this article aims to provide an overview of the integration of UAV and multispectral sensors in monitoring paddy growth applications based on vegetation indices and soil plant analysis development (SPAD) data. The article briefly describes current rice production in Malaysia and a general concept of precision agriculture technologies. The application of multispectral sensors integrated with UAVs in monitoring paddy growth is highlighted. Previous research on aerial imagery derived from the multispectral sensor using the normalised difference vegetation index (NDVI) is explored to provide information regarding the health condition of the paddy. Validation of the paddy growth map using SPAD data in determining the leaf's relative chlorophyll and nitrogen content is also being discussed. Implementation of precision agriculture among low-income farmers could provide valuable insights into the practical implications of this review. With ongoing education, training and experience, farmers can eventually manage the UAV independently in the field. This article concludes with a future research direction regarding the production of growth maps for other crops using a variety of vegetation indices and map validation using the SPAD metre values.
引用
收藏
页码:521 / 550
页数:30
相关论文
共 50 条
  • [21] A review of unmanned aerial vehicle based remote sensing and machine learning for cotton crop growth monitoring
    Aierken, Nueraili
    Yang, Bo
    Li, Yongke
    Jiang, Pingan
    Pan, Gang
    Li, Shijian
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2024, 227
  • [22] Unmanned Aerial Vehicle Framework for Algae Monitoring
    De Almeida, Aline Gabriel
    Do Nascimento, Eduardo Vieira
    Alvarez, Isaac Gaetani
    Correa Kim, Pedro Henrique
    Da Rocha, Lidia Gianne Souza
    Teixeira Vivaldini, Kelen Cristiane
    2021 LATIN AMERICAN ROBOTICS SYMPOSIUM / 2021 BRAZILIAN SYMPOSIUM ON ROBOTICS / 2021 WORKSHOP OF ROBOTICS IN EDUCATION (LARS-SBR-WRE 2021), 2021, : 84 - 89
  • [23] Unmanned aerial vehicle for fire surveillance and monitoring
    Madridano, A.
    Campos, S.
    Al-Kaff, A.
    Garcia, A.
    Martin, D.
    Escalera, A.
    REVISTA IBEROAMERICANA DE AUTOMATICA E INFORMATICA INDUSTRIAL, 2020, 17 (03): : 254 - 263
  • [24] Unmanned aerial vehicle for fire surveillance and monitoring
    Madridano A.
    Campos S.
    Al-Ka A.
    Garcia F.
    Martin D.
    Escalera A.
    RIAI - Revista Iberoamericana de Automatica e Informatica Industrial, 2020, 17 (03): : 254 - 263
  • [25] Comprehensive review of unmanned aerial vehicle application to safety mining management
    Do, Thao Phuong Thi
    Nguyen, Long Quoc
    Trinh, Le Hung
    Vambol, Viola
    ECOLOGICAL QUESTIONS, 2024, 35 (04)
  • [26] Unmanned-Aerial-Vehicle-Based Multispectral Monitoring of Nitrogen Content in Canopy Leaves of Processed Tomatoes
    Zhang, Hao
    Zhang, Li
    Wu, Hongqi
    Wang, Dejun
    Ma, Xin
    Shao, Yuqing
    Jiang, Mingjun
    Chen, Xinyu
    AGRICULTURE-BASEL, 2025, 15 (03):
  • [27] THE APPLICATION OF UNMANNED AERIAL VEHICLE REMOTE SENSING IN QUICKLY MONITORING CROP PESTS
    Yue, Jianwei
    Lei, Tianjie
    Li, Changchun
    Zhu, Jiangqun
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2012, 18 (08): : 1043 - 1052
  • [28] APPLICATION OF UNMANNED AERIAL VEHICLE (UAV) TECHNOLOGY IN POLLUTION MONITORING AND ENVIRONMENTAL TREATMENT
    Yang Zhiling
    Cheng Wei
    JOURNAL OF ENVIRONMENTAL PROTECTION AND ECOLOGY, 2022, 23 (05): : 1945 - 1952
  • [29] APPLICATION OF DEEP LEARNING AND UNMANNED AERIAL VEHICLE TECHNOLOGY IN TRAFFIC FLOW MONITORING
    Zhang, Jian-Shu
    Cao, Jie
    Mao, Bo
    PROCEEDINGS OF 2017 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOL 1, 2017, : 189 - 194
  • [30] Obstacle Avoidance for Ultrasonic Unmanned Aerial Vehicle monitoring using Android Application
    Itani, Miriana
    Haroun, Ali
    Fahs, Walid
    2018 19TH INTERNATIONAL ARAB CONFERENCE ON INFORMATION TECHNOLOGY (ACIT), 2018, : 236 - 239