Unlocking the Capabilities of Large Language Models for Accelerating Drug Development

被引:1
|
作者
Anderson, Wes [1 ]
Braun, Ian [1 ]
Bhatnagar, Roopal [1 ]
Romero, Klaus [1 ]
Walls, Ramona [1 ]
Schito, Marco [1 ]
Podichetty, Jagdeep T. [1 ]
机构
[1] Crit Path Inst, Tucson, AZ 85718 USA
关键词
DIGITAL THERAPEUTICS; HEALTH; FUTURE;
D O I
10.1002/cpt.3279
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Recent breakthroughs in natural language processing (NLP), particularly in large language models (LLMs), offer substantial advantages in model-informed drug development (MIDD). With billions of parameters and comprehensive pre-training on diverse data, these models effectively extract information from unstructured and structured data throughout the drug development lifecycle. This perspective envisions LLMs supporting MIDD, enhancing drug development, and emphasizes C-Path's strategic use of LLM innovations for actionable real-world evidence from real-world data (RWD).
引用
收藏
页码:38 / 41
页数:4
相关论文
共 50 条
  • [21] Accelerating Contextualization in AI Large Language Models Using Vector Databases
    Bin Tareaf, Raad
    AbuJarour, Mohammed
    Engelman, Tom
    Liermann, Philipp
    Klotz, Jesse
    38TH INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING, ICOIN 2024, 2024, : 316 - 321
  • [22] Artificial intelligence enabled ChatGPT and large language models in drug target discovery, drug discovery, and development
    Chakraborty, Chiranjib
    Bhattacharya, Manojit
    Lee, Sang-Soo
    MOLECULAR THERAPY-NUCLEIC ACIDS, 2023, 33 : 866 - 868
  • [23] On the Multilingual Capabilities of Very Large-Scale English Language Models
    Armengol-Estape, Jordi
    de Gibert Bonet, Ona
    Melero, Maite
    LREC 2022: THIRTEEN INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2022, : 3056 - 3068
  • [24] Benchmarking Vision Capabilities of Large Language Models in Surgical Examination Questions
    Bereuter, Jean-Paul
    Geissler, Mark Enrik
    Klimova, Anna
    Steiner, Robert-Patrick
    Pfeiffer, Kevin
    Kolbinger, Fiona R.
    Wiest, Isabella C.
    Muti, Hannah Sophie
    Kather, Jakob Nikolas
    JOURNAL OF SURGICAL EDUCATION, 2025, 82 (04)
  • [25] An Evaluation of Reasoning Capabilities of Large Language Models in Financial Sentiment Analysis
    Du, Kelvin
    Xing, Frank
    Mao, Rui
    Cambria, Erik
    2024 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI 2024, 2024, : 189 - 194
  • [26] Exploring the capabilities and limitations of large language models in the electric energy sector
    Majumder, Subir
    Dong, Lin
    Doudi, Fatemeh
    Cai, Yuting
    Tian, Chao
    Kalathil, Dileep
    Ding, Kevin
    Thatte, Anupam A.
    Li, Na
    Xie, Le
    JOULE, 2024, 8 (06) : 1544 - 1549
  • [27] Large language models in drug development: deciphering discontinuationc causes to inform future strategies
    Doktorova, T.
    Schneider, I.
    Brigo, A.
    Pletz, J.
    Schindler, T.
    Kulev, I.
    Sun, J.
    Rivkin, E.
    Suekuer, E.
    Birzele, F.
    Boess, F.
    Bopst, M.
    Mueller, L.
    Mohr, S.
    Freichel, C.
    Regenass, F.
    Schubert, C.
    Kronenberg, S.
    Lenz, B.
    Juedes, M.
    Jiang, T.
    Rack, N.
    Draganov, D.
    Marchesi, M.
    Musvasva, E.
    TOXICOLOGY LETTERS, 2024, 399 : S138 - S138
  • [29] Accelerating drug development
    7715 Rocton Ave., Chevy Chase, MD 20815, United States
    Pharm. Technol., 2007, 3 (32-42):
  • [30] Tender: Accelerating Large Language Models via Tensor Decomposition and Runtime Requantization
    Lee, Jungi
    Lee, Wonbeom
    Sim, Jaewoong
    2024 ACM/IEEE 51ST ANNUAL INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE, ISCA 2024, 2024, : 1048 - 1062