Foundations of Quantum Federated Learning Over Classical and Quantum Networks

被引:10
|
作者
Chehimi, Mahdi [1 ]
Chen, Samuel Yen-Chi [2 ]
Saad, Walid [1 ,3 ]
Towsley, Don [4 ]
Debbah, Merouane [5 ,6 ]
机构
[1] Virginia Tech, Bradley Dept Elect & Comp Engn, Wireless VT, Arlington, VA 22203 USA
[2] Brookhaven Natl Lab, Computat Sci Initiat, Upton, NY 22203 USA
[3] Lebanese Amer Univ, Artificial Intelligence & Cyber Syst Res Ctr, Beirut 11022, Lebanon
[4] Univ Massachusetts Amherst, Amherst, MA 01003 USA
[5] Khalifa Univ Sci & Technol, KU Res Ctr 6G, Abu Dhabi, U Arab Emirates
[6] Univ Paris Saclay, Cent Supelec, F-91192 Gif Sur Yvette, France
来源
IEEE NETWORK | 2024年 / 38卷 / 01期
关键词
Quantum computing; Training; Servers; Qubit; Logic gates; Integrated circuit modeling; Hardware;
D O I
10.1109/MNET.2023.3327365
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Quantum federated learning (QFL) is a novel framework that integrates the advantages of classical federated learning (FL) with the computational power of quantum technologies. This includes quantum computing and quantum machine learning (QML), enabling QFL to handle high-dimensional complex data. QFL can be deployed over both classical and quantum communication networks in order to benefit from informationtheoretic security levels surpassing traditional FL frameworks. In this paper, we provide the first comprehensive investigation of the challenges and opportunities of QFL. We particularly examine the key components of QFL and identify the unique challenges that arise when deploying it over both classical and quantum networks. We then develop novel solutions and articulate promising research directions that can help address the identified challenges. We also provide actionable recommendations to advance the practical realization of QFL.
引用
收藏
页码:124 / 130
页数:7
相关论文
共 50 条
  • [21] Quantum federated learning through blind quantum computing
    Weikang Li
    Sirui Lu
    DongLing Deng
    Science China(Physics,Mechanics & Astronomy), 2021, Mechanics & Astronomy)2021 (10) : 68 - 75
  • [22] Quantum synchronization over quantum networks
    Lohe, M. A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (46)
  • [23] Transfer learning in hybrid classical-quantum neural networks
    Mari, Andrea
    Bromley, Thomas R.
    Izaac, Josh
    Schuld, Maria
    Killoran, Nathan
    QUANTUM, 2020, 4
  • [24] Embedding Learning in Hybrid Quantum-Classical Neural Networks
    Liu, Minzhao
    Liu, Junyu
    Liu, Rui
    Makhanov, Henry
    Lykov, Danylo
    Apte, Anuj
    Alexeev, Yuri
    2022 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE 2022), 2022, : 79 - 86
  • [25] Towards Federated Learning on the Quantum Internet
    Suenkel, Leo
    Koelle, Michael
    Rohe, Tobias
    Gabor, Thomas
    COMPUTATIONAL SCIENCE, ICCS 2024, PT VI, 2024, 14937 : 330 - 344
  • [26] Quantum computing meets federated learning
    Kaifeng Bu
    Science China Physics, Mechanics & Astronomy, 2022, 65
  • [27] Robust quantum federated learning with noise
    Chen, Liangjun
    Yan, Lili
    Zhang, Shibin
    PHYSICA SCRIPTA, 2024, 99 (07)
  • [28] Quantum computing meets federated learning
    Kaifeng Bu
    Science China(Physics,Mechanics & Astronomy), 2022, (01) : 136 - 136
  • [29] Quantum computing meets federated learning
    Bu, Kaifeng
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2022, 65 (01)
  • [30] Quantum Federated Learning With Decentralized Data
    Huang, Rui
    Tan, Xiaoqing
    Xu, Qingshan
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2022, 28 (04)