ON ISOMORPHIC EMBEDDINGS IN THE CLASS OF DISJOINTLY HOMOGENEOUS REARRANGEMENT INVARIANT SPACES
被引:0
|
作者:
Astashkin, S. V.
论文数: 0引用数: 0
h-index: 0
机构:
Samara Natl Res Univ, Samara, Russia
Moscow MV Lomonosov State Univ, Moscow, Russia
Moscow Ctr Fundamental & Appl Math, Moscow, Russia
Bahcesehir Univ, Istanbul, TurkiyeSamara Natl Res Univ, Samara, Russia
Astashkin, S. V.
[1
,2
,3
,4
]
机构:
[1] Samara Natl Res Univ, Samara, Russia
[2] Moscow MV Lomonosov State Univ, Moscow, Russia
[3] Moscow Ctr Fundamental & Appl Math, Moscow, Russia
The equivalence of the Haar system in a rearrangement invariant space X on [0, 1] and a sequence of pairwise disjoint functions in some Lorentz space is known to imply that X = L-2[0, 1] up to the equivalence of norms. We show that the same holds for the class of uniform disjointly homogeneous rearrangement invariant spaces and obtain a few consequences for the properties of isomorphic embeddings of such spaces. In particular, the L-p[0, 1] space with 1 < p < infinity is the only uniform p-disjointly homogeneous rearrangement invariant space on [0, 1] with nontrivial Boyd indices which has two rearrangement invariant representations on the half-axis (0, infinity).
机构:
Samara Natl Res Univ, Dept Math, Moskovskoye Shosse 34, Samara 449086, RussiaSamara Natl Res Univ, Dept Math, Moskovskoye Shosse 34, Samara 449086, Russia
Astashkin, S.
Huang, J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ New South Wales, Sch Math & Stat, Kensington, NSW 2052, AustraliaSamara Natl Res Univ, Dept Math, Moskovskoye Shosse 34, Samara 449086, Russia
Huang, J.
Sukochev, F.
论文数: 0引用数: 0
h-index: 0
机构:
Univ New South Wales, Sch Math & Stat, Kensington, NSW 2052, AustraliaSamara Natl Res Univ, Dept Math, Moskovskoye Shosse 34, Samara 449086, Russia