A robust and low-cost biomass carbon fiber@SiO2 interlayer for reliable lithium-sulfur batteries

被引:58
|
作者
Liu, Tao [1 ,2 ]
Sun, Xiaolin [1 ]
Sun, Shimei [1 ]
Niu, Quanhai [1 ]
Liu, Hui [1 ]
Song, Wei [3 ]
Cao, Fengting [1 ]
Li, Xichao [1 ]
Ohsaka, Takeo [4 ]
Wu, Jianfei [1 ]
机构
[1] Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Qingdao 266101, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Sun Yat Sen Univ, Sch Chem, Guangzhou 510275, Guangdong, Peoples R China
[4] Kanagawa Univ, Res Inst Engn, Kanagawa Ku, Yokohama, Kanagawa 2218686, Japan
基金
中国博士后科学基金; 中国国家自然科学基金; 美国国家科学基金会;
关键词
Lithium-sulfur batteries; Biomass carbon fiber; SiO2; Polysulfide-anchoring; Interlayer; GRAPHENE OXIDE; ELECTROCHEMICAL PERFORMANCE; LONG-LIFE; SEPARATOR; CATHODE; ELECTROLYTES; IMMOBILIZER; PEEL;
D O I
10.1016/j.electacta.2018.10.168
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Lithium-sulfur batteries were investigated as promising next-generation energy storage devices owing to their high capacity in comparison to conventional lithium-ion batteries. Nevertheless, the serious shuttle effect and sluggish redox kinetics originated from dissolution of polysulfides and insulating property of sulfur and lithium sulfide, restricted their practical applications. To overcome these stubborn problems, a robust and environment-friendly biomass carbon fiber interlayer anchored with uniformly-distributed SiO2 nanoparticles was demonstrated. Benefiting from the excellent conductivity of carbon fiber, together with the stable chemical adsorption of SiO2 for soluble polysulfides, this low-cost and lightweight interlayer could not only remarkably enhance sulfur utilization, but also efficiently capture the polysulfides by chemical entrapment strategies. With this biomass carbon fiber@SiO2 interlayer, the batteries delivered a high reversible capacity of 1352.8 mAh g(-1) at 0.1 C and enhanced capacity of 618.4 mAh g(-1) after 500 cycles at 1.0 C. Even up to 4.2 mg cm(-2) sulfur loading, high cycling stability was also achieved by this interlayer. We believe this robust and low-cost interlayer has a great potential for practical applications of Li-S batteries. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:684 / 692
页数:9
相关论文
共 50 条
  • [1] A renaissance for lithium-sulfur batteries through low-cost, efficient, and sustainable biomass cathodes
    Benitez, Almudena
    Brandell, Daniel
    ONE EARTH, 2022, 5 (03): : 224 - 226
  • [2] Reliable Interlayer Based on Hybrid Nanocomposites and Carbon Nanotubes for Lithium-Sulfur Batteries
    Liu, Tao
    Sun, Shimei
    Hao, Jialiang
    Song, Wei
    Niu, Quanhai
    Sun, Xiaolin
    Wu, Yue
    Song, Depeng
    Wu, Jianfei
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (17) : 15607 - 15615
  • [3] Low-cost, porous carbon current collector with high sulfur loading for lithium-sulfur batteries
    Chung, Sheng-Heng
    Manthiram, Arumugam
    ELECTROCHEMISTRY COMMUNICATIONS, 2014, 38 : 91 - 95
  • [4] Electrochemical active interlayer with porous architecture for reliable lithium-sulfur batteries
    Zhou, Hang-Yu
    Cao, Xuan
    Qiao, Zi-Rui
    Gao, Shang
    Zhou, Pan
    Yan, Shuai-Shuai
    Zhang, Qing
    Li, Cheng-Hui
    Hou, Wen -Hui
    Lu, Yang
    Liu, Kai
    Kang, Rong-Xue
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2024, 966
  • [5] High rate and stable cycling of lithium-sulfur batteries with carbon fiber cloth interlayer
    Yang, Yuxiang
    Sun, Wang
    Zhang, Jing
    Yue, Xinyang
    Wang, Zhenhua
    Sun, Kening
    ELECTROCHIMICA ACTA, 2016, 209 : 691 - 699
  • [6] Insight into the Function Mechanism of the Carbon Interlayer in Lithium-Sulfur Batteries
    Yuan, Kai
    Yuan, Lixia
    Xiang, Jingwei
    Liu, Jing
    Gu, Junfang
    Chen, Xin
    Hao, Zhangxiang
    Li, Ming
    Huang, Yunhui
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (09) : A1880 - A1885
  • [7] Lightweight freestanding hollow carbon fiber interlayer for high-performance lithium-sulfur batteries
    Meng, Qinglong
    Yang, Rong
    Liu, Ying
    Li, Mingxu
    Chen, Shaozheng
    Yan, Yinglin
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (04) : 5296 - 5305
  • [8] High-performance lithium-sulfur batteries achieved by a multifunctional SiO2-nanotubes carbon composite interlayer
    Zhang, Congbiao
    Li, Ke
    Dai, Jintao
    Zhang, Xi
    Li, Rui
    Zou, Jingyi
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 895
  • [9] Interlayer design based on carbon materials for lithium-sulfur batteries: a review
    Chen, Lei
    Yu, Hui
    Li, Wenxiao
    Dirican, Mahmut
    Liu, Yong
    Zhang, Xiangwu
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (21) : 10709 - 10735
  • [10] Nitrogen-doped hierarchical porous carbon derived from low-cost biomass pomegranate residues for high performance lithium-sulfur batteries
    Chen, Xiaojuan
    Du, Gaohui
    Zhang, Miao
    Kalam, Abul
    Su, Qingmei
    Ding, Shukai
    Xu, Bingshe
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2019, 848