Friction stir welding and processing of pipes: a status report on joining, materials, and industry applications

被引:3
|
作者
Gangil, Namrata [1 ]
Siddiquee, Arshad Noor [2 ]
Yadav, Jitendra [1 ,2 ]
Yadav, Shashwat [1 ]
Khare, Vedant [1 ]
Mittal, Neelmani [1 ]
Sharma, Sambhav [1 ]
Srivastava, Rittik [1 ]
Khan, Sohail Mazher Ali [3 ]
Mohammed, M. A. K. [3 ]
机构
[1] Ajay Kumar Garg Engn Coll, Dept Mech Engn, Ghaziabad, India
[2] Jamia Millia Islamia, Dept Mech Engn, New Delhi, India
[3] Florida Int Univ, Dept Mech & Mat Engn, North Miami, FL USA
关键词
Pipe welding; Friction stir welding; FSW parameters; Mechanical properties; ALUMINUM-ALLOY; TOOL; FSW;
D O I
10.1108/WJE-01-2024-0013
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Purpose - The purpose of this paper is to compile a comprehensive status report on pipes/piping networks across different industrial sectors, along with specifications of materials and sizes, and showcase welding avenues. It further extends to highlight the promising friction stir welding as a single solid-state pipe welding procedure. This paper will enable all piping, welding and friction stir welding stakeholders to identify scope for their engagement in a single window. Design/methodology/approach - The paper is a review paper, and it is mainly structured around sections on materials, sizes and standards for pipes in different sectors and the current welding practice for joining pipe and pipe connections; on the process and principle of friction stir welding (FSW) for pipes; identification of main welding process parameters for the FSW of pipes; effects of process parameters; and a well-carved-out concluding summary. Findings - A well-carved-out concluding summary of extracts from thoroughly studied research is presented in a structured way in which the avenues for the engagement of FSW are identified. Research limitations/implications - The implications of the research are far-reaching. The FSW is currently expanding very fast in the welding of flat surfaces and has evolved into a vast number of variants because of its advantages and versatility. The application of FSW is coming up late but catching up fast, and as a late starter, the outcomes of such a review paper may support stake holders to expand the application of this process from pipe welding to pipe manufacturing, cladding and other high-end applications. Because the process is inherently inclined towards automation, its throughput rate is high and it does not need any consumables, the ultimate benefit can be passed on to the industry in terms of financial gains. Originality/value - To the best of the authors' knowledge, this is the only review exclusively for the friction stir welding of pipes with a well-organized piping specification detailed about industrial sectors. The current pipe welding practice in each sector has been presented, and the avenues for engaging FSW have been highlighted. The FSW pipe process parameters are characteristically distinguished from the conventional FSW, and the effects of the process parameters have been presented. The summary is concise yet comprehensive and organized in a structured manner.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Progress in joining austenitic stainless steels by friction stir welding
    Johnson, R
    Threadgill, PL
    TRENDS IN WELDING RESEARCH, PROCEEDINGS, 2003, : 88 - 92
  • [32] Friction stir welding - Joining of aluminium with low heat input
    Schofer, E
    MATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK, 1999, 30 (11) : 693 - 696
  • [33] The Development of Adjustable Friction Stir Welding for Joining Metal to Resin
    Gao Y.
    Yamamoto N.
    Liao J.
    Seimitsu Kogaku Kaishi/Journal of the Japan Society for Precision Engineering, 2024, 90 (07): : 563 - 567
  • [34] Investigating resistance and friction stir welding processes for joining magnesium
    Edison Welding Institute, Columbus, OH
    Weld J (Miami Fla), 2006, 3 (46-53):
  • [35] Joining of Steels to Aluminum and its Alloys by Friction Stir Welding
    A. A. Chularis
    R. A. Rzaev
    A. G. Valisheva
    V. V. Kogan
    Metal Science and Heat Treatment, 2021, 62 : 738 - 747
  • [36] Joining of Steels to Aluminum and its Alloys by Friction Stir Welding
    Chularis, A. A.
    Rzaev, R. A.
    Valisheva, A. G.
    Kogan, V. V.
    METAL SCIENCE AND HEAT TREATMENT, 2021, 62 (11-12) : 738 - 747
  • [37] Recent development of new joining process, friction stir welding
    Shinoda, Takeshi
    Yosetsu Gakkai Shi/Journal of the Japan Welding Society, 1998, 67 (04):
  • [38] Sizing of a Robot System for Joining by Friction Stir Welding Process
    Cota, Bruno Silva
    Bracarense, Alexandre Queiroz
    Ferreira Coelho, Fagner Guilherme
    SOLDAGEM & INSPECAO, 2017, 22 (04): : 480 - 493
  • [39] Joining of 5083 and 6061 aluminum alloys by friction stir welding
    Shigematsu, I
    Kwon, YJ
    Suzuki, K
    Imai, T
    Saito, N
    JOURNAL OF MATERIALS SCIENCE LETTERS, 2003, 22 (05) : 353 - 356
  • [40] Magnesium and Aluminium alloys dissimilar joining by Friction Stir Welding
    Paradiso, V.
    Rubino, F.
    Carlone, P.
    Palazzo, G. S.
    17TH INTERNATIONAL CONFERENCE ON SHEET METAL (SHEMET17), 2017, 183 : 239 - 244