DISFL-QA: A Benchmark Dataset for Understanding Disfluencies in Question Answering

被引:0
|
作者
Gupta, Aditya [1 ]
Xu, Jiacheng [2 ,4 ]
Upadhyay, Shyam [1 ]
Yang, Diyi [3 ]
Faruqui, Manaal [1 ]
机构
[1] Google Assistant, Mountain View, CA USA
[2] Univ Texas Austin, Austin, TX 78712 USA
[3] Georgia Inst Technol, Atlanta, GA 30332 USA
[4] Google, Mountain View, CA USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Disfluencies is an under-studied topic in NLP, even though it is ubiquitous in human conversation. This is largely due to the lack of datasets containing disfluencies. In this paper, we present a new challenge question answering dataset, DISFL-QA, a derivative of SQUAD, where humans introduce contextual disfluencies in previously fluent questions. DISFL- QA contains a variety of challenging disfluencies that require a more comprehensive understanding of the text than what was necessary in prior datasets. Experiments show that the performance of existing state-of-the-art question answering models degrades significantly when tested on DISFLQA in a zero-shot setting. We show data augmentation methods partially recover the loss in performance and also demonstrate the efficacy of using gold data for fine-tuning. We argue that we need large-scale disfluency datasets in order for NLP models to be robust to them. The dataset is publicly available at: https://github.com/ google-research-datasets/disfl-qa.
引用
收藏
页码:3309 / 3319
页数:11
相关论文
共 50 条
  • [31] PQuAD: A Persian question answering dataset
    Darvishi, Kasra
    Shahbodaghkhan, Newsha
    Abbasiantaeb, Zahra
    Momtazi, Saeedeh
    COMPUTER SPEECH AND LANGUAGE, 2023, 80
  • [32] FQuAD: French Question Answering Dataset
    d'Hoffschmidt, Martin
    Belblidia, Wacim
    Heinrich, Quentin
    Brendle, Tom
    Vidal, Maxime
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EMNLP 2020, 2020, : 1193 - 1208
  • [33] Slovak Dataset for Multilingual Question Answering
    Hladek, Daniel
    Stas, Jan
    Juhar, Jozef
    Koctur, Tomas
    IEEE ACCESS, 2023, 11 : 32869 - 32881
  • [34] VQuAnDa: Verbalization QUestion ANswering DAtaset
    Kacupaj, Endri
    Zafar, Hamid
    Lehmann, Jens
    Maleshkova, Maria
    SEMANTIC WEB (ESWC 2020), 2020, 12123 : 531 - 547
  • [35] LLQA - Lifelog Question Answering Dataset
    Tran, Ly-Duyen
    Thanh Cong Ho
    Lan Anh Pham
    Binh Nguyen
    Gurrin, Cathal
    Zhou, Liting
    MULTIMEDIA MODELING (MMM 2022), PT I, 2022, 13141 : 217 - 228
  • [36] CS1QA: A Dataset for Assisting Code-based Question Answering in an Introductory Programming Course
    Lee, Changyoon
    Seonwoo, Yeon
    Oh, Alice
    NAACL 2022: THE 2022 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES, 2022, : 2026 - 2040
  • [37] Technical, Hard and Explainable Question Answering (THE-QA)
    Sampat, Shailaja
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 6454 - 6455
  • [38] Natural Questions: A Benchmark for Question Answering Research
    Kwiatkowski T.
    Palomaki J.
    Redfield O.
    Collins M.
    Parikh A.
    Alberti C.
    Epstein D.
    Polosukhin I.
    Devlin J.
    Lee K.
    Toutanova K.
    Jones L.
    Kelcey M.
    Chang M.-W.
    Dai A.M.
    Uszkoreit J.
    Le Q.
    Petrov S.
    Transactions of the Association for Computational Linguistics, 2019, 7 : 453 - 466
  • [39] Developing Question Answering (QA) systems using the patterns
    Moise, Maria
    Gheorghe, Ciprian
    Zingale, Marilena
    WSEAS Transactions on Computers, 2010, 9 (07): : 726 - 737
  • [40] Natural Questions: A Benchmark for Question Answering Research
    Kwiatkowski, Tom
    Palomaki, Jennimaria
    Redfield, Olivia
    Collins, Michael
    Parikh, Ankur
    Alberti, Chris
    Epstein, Danielle
    Polosukhin, Illia
    Devlin, Jacob
    Lee, Kenton
    Toutanova, Kristina
    Jones, Llion
    Kelcey, Matthew
    Chang, Ming-Wei
    Dai, Andrew M.
    Uszkoreit, Jakob
    Quoc Le
    Petrov, Slav
    TRANSACTIONS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, 2019, 7 : 453 - 466