Research on Road Extraction From High-Resolution Remote Sensing Images Based on Improved UNet plus

被引:3
|
作者
Li, Ke [1 ]
Tan, Ming [2 ]
Xiao, Dexun [1 ]
Yu, Tiantian [1 ]
Li, Yanfeng [1 ]
Li, Ji [1 ]
机构
[1] Beijing GEOWAY Info Tech Co, Beijing 100043, Peoples R China
[2] Guangdong Prov Map Inst, Guangzhou, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
关键词
High resolution remote sensing image (HRSI); road extraction; UNet plus plus; CBAM; loss function;
D O I
10.1109/ACCESS.2024.3385540
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To address the challenges of road extraction in high-resolution remote sensing images, this paper presents an enhanced UNet++ road extraction method that incorporates CBAM. The original UNet++ network is referenced, and the loss function is improved by introducing a new joint loss function. The enhanced UNet++ network utilizes an attention mechanism to enhance the network's ability to identify road features, thereby improving the accuracy of road extraction. Additionally, a new joint loss function is employed to enhance the network's stability and further improve its road extraction capability. Experimental validation is performed on the Massachusetts roads dataset and DeepGlobal road dataset. The experimental results demonstrate that this method outperforms U-Net, SegNet, and UNet++ networks in terms of IoU, Recall, OA, and Kappa. Specifically, on the Massachusetts road dataset, the OA and Kappa values are 94.92% and 0.9202, respectively. On the DeepGlobal road dataset, the OA and Kappa values for this algorithm are 98.12% and 0.9515, respectively. The ablation experiment confirms the effectiveness of the proposed enhancements. In conclusion, this paper presents a method that effectively extracts roads from high-resolution remote sensing images, exhibits a certain level of generalization ability, and can provide valuable support for road protection and planning.
引用
收藏
页码:50300 / 50309
页数:10
相关论文
共 50 条
  • [41] Dual convolutional network based on hypergraph and multilevel feature fusion for road extraction from high-resolution remote sensing images
    Li, Bowen
    Tang, Xianghong
    Xiao, Rang
    Lu, Jianguang
    Wang, Yuhao
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2024, 17 (01)
  • [42] Method Based on Edge Constraint and Fast Marching for Road Centerline Extraction from Very High-Resolution Remote Sensing Images
    Gao, Lipeng
    Shi, Wenzhong
    Miao, Zelang
    Lv, Zhiyong
    REMOTE SENSING, 2018, 10 (06)
  • [43] Automatic Method for Extraction of Complex Road Intersection Points From High-Resolution Remote Sensing Images Based on Fuzzy Inference
    Dai, Jiguang
    Wang, Yang
    Li, Wantong
    Zuo, Yuqiang
    IEEE ACCESS, 2020, 8 : 39212 - 39224
  • [44] A Self-Supervised Learning Framework for Road Centerline Extraction From High-Resolution Remote Sensing Images
    Guo, Qing
    Wang, Zhipan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 4451 - 4461
  • [45] Building Extraction from High-Resolution Remote-Sensing Images Based on Deep Learning
    You, Haihui
    Li, Linhui
    Jing, Weipeng
    ELEKTROTEHNISKI VESTNIK, 2020, 87 (05): : 281 - 286
  • [46] Building extraction from high-resolution remote-sensing images based on deep learning
    You, Haihui
    Li, Linhui
    Jing, Weipeng
    Elektrotehniski Vestnik/Electrotechnical Review, 2020, 87 (05): : 281 - 286
  • [47] Multitask Learning-based Building Extraction from High-Resolution Remote Sensing Images
    Zhu P.
    Li S.
    Zhang L.
    Li Y.
    Journal of Geo-Information Science, 2021, 23 (03) : 514 - 523
  • [48] Extraction of Aquaculture Cages from High-Resolution Remote Sensing Images Based on Deep Learning
    Yuan, Ying
    Li, Fei
    Zhou, Dan
    Bai, Lu
    Jurek-Loughrey, Anna
    Wang, Zhibao
    2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2024), 2024, : 9556 - 9560
  • [49] A Novel Road Extraction Algorithm for High Resolution Remote Sensing Images
    Teng Xinpeng
    Song Shunlin
    Zhan Yongzhao
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2014, 8 (03): : 1435 - 1443
  • [50] Extraction Method of Rotated Objects from High-Resolution Remote Sensing Images
    Liu, Tao Sun Kun
    Shi, Jiechuan
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT II, 2023, 14255 : 295 - 307