Research on Road Extraction From High-Resolution Remote Sensing Images Based on Improved UNet plus

被引:3
|
作者
Li, Ke [1 ]
Tan, Ming [2 ]
Xiao, Dexun [1 ]
Yu, Tiantian [1 ]
Li, Yanfeng [1 ]
Li, Ji [1 ]
机构
[1] Beijing GEOWAY Info Tech Co, Beijing 100043, Peoples R China
[2] Guangdong Prov Map Inst, Guangzhou, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
关键词
High resolution remote sensing image (HRSI); road extraction; UNet plus plus; CBAM; loss function;
D O I
10.1109/ACCESS.2024.3385540
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To address the challenges of road extraction in high-resolution remote sensing images, this paper presents an enhanced UNet++ road extraction method that incorporates CBAM. The original UNet++ network is referenced, and the loss function is improved by introducing a new joint loss function. The enhanced UNet++ network utilizes an attention mechanism to enhance the network's ability to identify road features, thereby improving the accuracy of road extraction. Additionally, a new joint loss function is employed to enhance the network's stability and further improve its road extraction capability. Experimental validation is performed on the Massachusetts roads dataset and DeepGlobal road dataset. The experimental results demonstrate that this method outperforms U-Net, SegNet, and UNet++ networks in terms of IoU, Recall, OA, and Kappa. Specifically, on the Massachusetts road dataset, the OA and Kappa values are 94.92% and 0.9202, respectively. On the DeepGlobal road dataset, the OA and Kappa values for this algorithm are 98.12% and 0.9515, respectively. The ablation experiment confirms the effectiveness of the proposed enhancements. In conclusion, this paper presents a method that effectively extracts roads from high-resolution remote sensing images, exhibits a certain level of generalization ability, and can provide valuable support for road protection and planning.
引用
收藏
页码:50300 / 50309
页数:10
相关论文
共 50 条
  • [1] Road extraction from high-resolution remote sensing images based on HRNet
    Chen X.
    Liu Z.
    Zhou S.
    Yu H.
    Liu Y.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2024, 46 (04): : 1167 - 1173
  • [2] Road extraction from high-resolution remote sensing images based on characteristics
    Yu, Jie
    Qin, Huiling
    Yan, Qin
    Tan, Ming
    Zhang, Guoning
    REMOTE SENSING AND GIS DATA PROCESSING AND APPLICATIONS; AND INNOVATIVE MULTISPECTRAL TECHNOLOGY AND APPLICATIONS, PTS 1 AND 2, 2007, 6790
  • [3] Road Information Extraction from High-Resolution Remote Sensing Images Based on Road Reconstruction
    Zhou, Tingting
    Sun, Chenglin
    Fu, Haoyang
    REMOTE SENSING, 2019, 11 (01)
  • [4] Road Extraction from High-resolution Remote Sensing Images Based on Synthetical Characteristics
    Chen, Yongsheng
    Hong, Zhijia
    He, Qun
    Ma, Hongbin
    MEASUREMENT TECHNOLOGY AND ENGINEERING RESEARCHES IN INDUSTRY, PTS 1-3, 2013, 333-335 : 828 - 831
  • [5] Application Of High-Resolution Remote Sensing Images In Road Extraction
    Liu, Huan
    Yan, Zhen
    PROCEEDINGS OF THE 2016 2ND INTERNATIONAL CONFERENCE ON ADVANCES IN ENERGY, ENVIRONMENT AND CHEMICAL ENGINEERING (AEECE 2016), 2016, 89 : 346 - 352
  • [6] SNLRUX plus plus for Building Extraction From High-Resolution Remote Sensing Images
    Lei, Yanjing
    Yu, Jiamin
    Chan, Sixian
    Wu, Wei
    Liu, Xiaoying
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 409 - 421
  • [7] Features and Methods of Road Extraction from High-resolution Remote Sensing Images
    You, Guoping
    Zeng, Wanghui
    2019 CROSS STRAIT QUAD-REGIONAL RADIO SCIENCE AND WIRELESS TECHNOLOGY CONFERENCE (CSQRWC), 2019,
  • [8] Road extraction from high-resolution remote sensing images with spatial continuity
    Remote Sensing and GIS Application Laboratory, Xinjiang Ecology and Geography Institute, Chinese Academy of Sciences, 818 South Beijing Road, Urumqi 830011, China
    不详
    Wuhan Daxue Xuebao Xinxi Kexue Ban, 11 (1298-1301):
  • [9] Road Extraction of High-Resolution Remote Sensing Images Derived from DenseUNet
    Xin, Jiang
    Zhang, Xinchang
    Zhang, Zhiqiang
    Fang, Wu
    REMOTE SENSING, 2019, 11 (21)
  • [10] Urban Road Extraction from High-resolution Remote Sensing Images Based on Semantic Model
    Zhang, Lianjun
    Zhang, Jing
    Zhang, Dapeng
    Hou, Xiaohui
    Yang, Gang
    2010 18TH INTERNATIONAL CONFERENCE ON GEOINFORMATICS, 2010,