On Complex Pisot Numbers That Are Roots of Borwein Trinomials

被引:0
|
作者
Drungilas, Paulius [1 ]
Jankauskas, Jonas [1 ]
Junevicius, Grintas [1 ]
机构
[1] Vilnius Univ, Inst Math, Dept Math & Informat, Naugarduko 24, LT-03225 Vilnius, Lithuania
关键词
Borwein trinomial; complex Pisot number; unimodular number; root of unity; MAHLER MEASURES; SALEM-NUMBERS; POWERS; SEQUENCES;
D O I
10.3390/math12081129
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let n> m be positive integers. Polynomials of the form z(n )+/- z(m )+/- 1 are called Borwein trinomials. Using an old result of Bohl, we derive explicit formulas for the number of roots of a Borwein trinomial inside the unit circle |z|<1. Based on this, we determine all Borwein trinomials that have a complex Pisot number as a root. There are exactly 29 such trinomials.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] An approximation property of Pisot numbers
    Komornik, V
    Loreti, P
    Pedicini, M
    JOURNAL OF NUMBER THEORY, 2000, 80 (02) : 218 - 237
  • [42] Salem numbers as Mahler measures of Gaussian Pisot numbers
    Zaimi, Toufik
    ACTA ARITHMETICA, 2020, 194 (04) : 383 - 392
  • [43] Salem numbers, Pisot numbers, Mahler measure, and graphs
    McKee, J
    Smyth, C
    EXPERIMENTAL MATHEMATICS, 2005, 14 (02) : 211 - 229
  • [44] Some results on Pisot and Salem numbers
    Bertin, MJ
    NUMBER THEORY IN PROGRESS, VOLS 1 AND 2: VOL 1: DIOPHANTINE PROBLEMS AND POLYNOMIALS; VOL 2: ELEMENTARY AND ANALYTIC NUMBER THEORY;, 1999, : 1 - 9
  • [45] On the spectra of Pisot-cyclotomic numbers
    Kevin G. Hare
    Zuzana Masáková
    Tomáš Vávra
    Letters in Mathematical Physics, 2018, 108 : 1729 - 1756
  • [46] Periodic Intermediate β-Expansions of Pisot Numbers
    Quackenbush, Blaine
    Samuel, Tony
    West, Matt
    MATHEMATICS, 2020, 8 (06)
  • [47] Computable absolutely Pisot normal numbers
    Madritsch, Manfred G.
    Scheerer, Adrian-Maria
    Tichy, Robert F.
    ACTA ARITHMETICA, 2018, 184 (01) : 7 - 29
  • [48] PISOT AND SALEM K-NUMBERS
    BERTIN, MJ
    ACTA ARITHMETICA, 1994, 68 (02) : 113 - 131
  • [50] There are only eleven special Pisot numbers
    Smyth, CJ
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1999, 31 : 1 - 5