Applications of artificial intelligence-powered prenatal diagnosis for congenital heart disease

被引:1
|
作者
Liu, Xiangyu [1 ,2 ]
Zhang, Yingying [1 ,2 ]
Zhu, Haogang [2 ,3 ,4 ]
Jia, Bosen [5 ]
Wang, Jingyi [6 ,7 ]
He, Yihua [6 ,7 ]
Zhang, Hongjia [2 ,8 ]
机构
[1] Beihang Univ, Sch Biol Sci & Med Engn, Beijing, Peoples R China
[2] Beihang Univ, Int Innovat Inst, Key Lab Data Sci & Intelligent Comp, Hangzhou 311115, Peoples R China
[3] Beihang Univ, State Key Lab Software Dev Environm, Beijing, Peoples R China
[4] Beihang Univ, Sch Comp Sci & Engn, Beijing, Peoples R China
[5] Victoria Univ Wellington, Sch Biol Sci, Wellington, New Zealand
[6] Capital Med Univ, Echocardiog Med Ctr, Beijing Anzhen Hosp, Beijing, Peoples R China
[7] Beijing Anzhen Hosp, Maternal Fetal Med Ctr Fetal Heart Dis, Beijing, Peoples R China
[8] Beijing Lab Cardiovasc Precis Med, Beijing, Peoples R China
来源
关键词
congenital heart disease; artificial intelligence; prenatal diagnosis; fetal echocardiography; deep learning; CHROMOSOMAL-ABNORMALITIES; MOTION CORRECTION; NEURAL-NETWORK; UNITED-STATES; RISK-FACTORS; DEFECTS; SEGMENTATION; ULTRASOUND; MRI; LOCALIZATION;
D O I
10.3389/fcvm.2024.1345761
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Artificial intelligence (AI) has made significant progress in the medical field in the last decade. The AI-powered analysis methods of medical images and clinical records can now match the abilities of clinical physicians. Due to the challenges posed by the unique group of fetuses and the dynamic organ of the heart, research into the application of AI in the prenatal diagnosis of congenital heart disease (CHD) is particularly active. In this review, we discuss the clinical questions and research methods involved in using AI to address prenatal diagnosis of CHD, including imaging, genetic diagnosis, and risk prediction. Representative examples are provided for each method discussed. Finally, we discuss the current limitations of AI in prenatal diagnosis of CHD, namely Volatility, Insufficiency and Independence (VII), and propose possible solutions.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Pediatric prenatal diagnosis of congenital heart disease
    Killen, Stacy A. S.
    Mouledoux, Jessica H.
    Kavanaugh-McHugh, Ann
    CURRENT OPINION IN PEDIATRICS, 2014, 26 (05) : 536 - 545
  • [32] Prenatal diagnosis and management of congenital heart disease
    Cloez, JL
    Droulle, P
    ARCHIVES DE PEDIATRIE, 2001, 8 (10): : 1113 - 1115
  • [33] Congenital heart disease, prenatal diagnosis and management
    Meller, Cesar H.
    Grinenco, Sofia
    Aiello, Horacio
    Cordoba, Antonela
    Saenz-Tejeira, Maria M.
    Marantz, Pablo
    Otano, Lucas
    ARCHIVOS ARGENTINOS DE PEDIATRIA, 2020, 118 (02): : E149 - E160
  • [34] Evaluation of prenatal diagnosis of congenital heart disease
    Stoll, C
    Alembik, Y
    Dott, B
    Meyer, MJ
    Pennerath, A
    Peter, MO
    De Geeter, B
    PRENATAL DIAGNOSIS, 1998, 18 (08) : 801 - 807
  • [35] Prenatal diagnosis of congenital heart disease - Introduction
    Allan, LD
    Simpson, LL
    SEMINARS IN PERINATOLOGY, 2000, 24 (05) : 323 - 323
  • [36] The Role of Artificial Intelligence-Powered Imaging in Cerebrovascular Accident Detection
    Hastings, Natasha
    Samuel, Dany
    Ansari, Aariz N.
    Kaurani, Purvi
    Winston, J. Jenkin
    Bhandary, Vaibhav S.
    Gautam, Prabin
    Purayil, Afsal Latheef Tayyil
    Hassan, Taimur
    Eshwar, Mummareddi Dinesh
    Nuthalapati, Bala Sai Teja
    Pothuri, Jeevan Kumar
    Ali, Noor
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2024, 16 (05)
  • [37] Artificial intelligence-powered early identification of refractory constipation in children
    Huang, Yi-Hsuan
    Wan, Ruixuan
    Yang, Yan
    Jin, Yu
    Lin, Qian
    Liu, Zhifeng
    Lu, Yan
    TRANSLATIONAL PEDIATRICS, 2024, 13 (02) : 212 - 223
  • [38] Artificial intelligence-powered coronary artery disease diagnosis from SPECT myocardial perfusion imaging: a comprehensive deep learning study
    Hajianfar, Ghasem
    Gharibi, Omid
    Sabouri, Maziar
    Mohebi, Mobin
    Amini, Mehdi
    Yasemi, Mohammad Javad
    Chehreghani, Mohammad
    Maghsudi, Mehdi
    Mansouri, Zahra
    Edalat-Javid, Mohammad
    Valavi, Setareh
    Bitarafan Rajabi, Ahmad
    Salimi, Yazdan
    Arabi, Hossein
    Rahmim, Arman
    Shiri, Isaac
    Zaidi, Habib
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2025,
  • [39] The perceptions of automated artificial intelligence-powered clinical documentation assisted in dentistry
    Yu, Yen-Cheng
    Yang, Ching-Wen
    Chang, Yu-Chao
    JOURNAL OF DENTAL SCIENCES, 2023, 18 (03) : 1421 - 1422
  • [40] Cost Optimization of Dorzagliatin Using Artificial Intelligence-Powered Population Modeling
    Bennett, Brittany
    Allen, Sydney
    Eilerman, Bradley
    Testa, Leonard J.
    DIABETES, 2019, 68