Experimental study on the cavitation phenomenon effect on the efficiency of a turbulent premixed flame kerosene/air

被引:1
|
作者
Lamoot, L. [1 ]
Manescau, B. [1 ]
Chetehouna, K. [1 ]
Obame, E. [2 ]
机构
[1] Univ Orleans, INSA Ctr Val Loire, PRISME, EA 4229, F-18022 Bourges, France
[2] Univ Sci & Technol Masuku USTM, Dept Ind Engn & Maintenance, BP 941, Franceville, Gabon
关键词
NexGen burner; Cavitation; Nozzle; Continuous flame; Combustion efficiency; MULTI-HOLE NOZZLES; SPRAY CHARACTERISTICS; DIESEL; FLOW; ENGINE; MODEL;
D O I
10.1016/j.expthermflusci.2024.111170
中图分类号
O414.1 [热力学];
学科分类号
摘要
In order to characterize the influence of cavitation in a nozzle on a turbulent premixed kerosene/air flame, an experimental study was conducted using a NexGen burner. This study was carried out in two distinct stages. The first stage was devoted to characterizing the necessary conditions for inducing the cavitation phenomenon, using a novel experimental device enabling fluidic study. The second stage enabled the characterization of the influence of cavitation on a flame, building upon the previously obtained results. To this end, three DELAVAN nozzles (2.25; 2.5; 3.0 80 W) were employed. The fluidic characterization stage involved the manufacture of transparent nozzles, facilitating the integration of piezoelectric pressure sensors. The results showed that cavitation has a significant influence on the temperature and density heat flux flame associated to the effect on the flame structure represented by three distinct zones: continuous flame, intermittent flame and plume flame. For the 2.25 80 W nozzle based on the smallest diameter, the risk of cavitation is the highest, and the results showed that for the lowest value of the cavitation number, the continuous flame was no longer visible proving the harmful effects of cavitation on the combustion of a premixed flame from a burner such as the NexGen burner.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Experimental investigation of flame/solid interactions in turbulent premixed combustion
    Ibrahim, SS
    Hargrave, GK
    Williams, TC
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2001, 24 (3-4) : 99 - 106
  • [32] Methane-Air Equivalence Ratio Effect on Premixed Turbulent Low Swirl Stabilized Flame
    Ouali, S.
    Bentebbiche, A. H.
    Belmrabet, T.
    ACTA PHYSICA POLONICA A, 2014, 126 (03) : 717 - 723
  • [33] Experimental Study on Local Flame Properties of Hydrogen Added Hydrocarbon Premixed Turbulent Flames
    Nakahara, Masaya
    Shirasuna, Takamori
    Hashimoto, Jun
    JOURNAL OF THERMAL SCIENCE AND TECHNOLOGY, 2009, 4 (01): : 190 - 201
  • [34] Experimental and computational study of a lifted, non-premixed turbulent free jet flame
    Mahmud, T.
    Sangha, S. K.
    Costa, M.
    Santos, A.
    FUEL, 2007, 86 (5-6) : 793 - 806
  • [35] Experimental study on the competing effect of ceramic pellets on premixed methane-air flame propagation in a duct
    Chen, Jiayan
    Jin, Kaiqiang
    Duan, Qiangling
    Li, Ping
    Sun, Jinhua
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2021, 72
  • [36] Experimental and numerical modelling of the interaction between a turbulent premixed propane/air flame and a composite flat plate
    Dellinger, N.
    Donjat, D.
    Laroche, E.
    Reulet, P.
    FIRE SAFETY JOURNAL, 2023, 141
  • [37] Flame characteristics and turbulent flame speeds of turbulent, high-pressure, lean premixed methane/air flames
    Griebel, P.
    Bombach, R.
    Inauen, A.
    Schaeren, R.
    Schenker, S.
    Siewert, P.
    PROCEEDINGS OF THE ASME TURBO EXPO 2005, VOL 2, 2005, : 405 - 413
  • [38] Flame characteristics of turbulent lean premixed methane/air flames at high pressure: Turbulent flame speed and flame brush thickness
    Griebel, P.
    Siewert, P.
    Jansohn, P.
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2007, 31 : 3083 - 3090
  • [39] Study of the acoustic near field of a turbulent, not premixed flame
    Klewer, C.
    Flemming, F.
    Sadiki, A.
    Janicka, J.
    VDI Berichte, 2007, (1988): : 379 - 384
  • [40] An experimental study of premixed hydrogen/air flame propagation in a partially open duct
    Xiao, Huahua
    Wang, Qingsong
    Shen, Xiaobo
    An, Weiguang
    Duan, Qiangling
    Sun, Jinhua
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (11) : 6233 - 6241