Recovering biomolecular network dynamics from single-cell omics data requires three time points

被引:0
|
作者
Wang, Shu [1 ,2 ,3 ]
Al-Radhawi, Muhammad Ali [4 ,5 ]
Lauffenburger, Douglas A. [3 ]
Sontag, Eduardo D. [4 ,5 ]
机构
[1] Univ Toronto, Donnelly Ctr, Toronto, ON, Canada
[2] Univ Toronto, Mol Genet, Toronto, ON, Canada
[3] MIT, Dept Biol Engn, Cambridge, MA 02139 USA
[4] Northeastern Univ, Dept Bioengn & Engn, Boston, MA 02115 USA
[5] Northeastern Univ, Dept Comp Engn, Boston, MA 02115 USA
关键词
D O I
10.1038/s41540-024-00424-7
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Single-cell omics technologies can measure millions of cells for up to thousands of biomolecular features, enabling data-driven studies of complex biological networks. However, these high-throughput experimental techniques often cannot track individual cells over time, thus complicating the understanding of dynamics such as time trajectories of cell states. These "dynamical phenotypes" are key to understanding biological phenomena such as differentiation fates. We show by mathematical analysis that, in spite of high dimensionality and lack of individual cell traces, three time-points of single-cell omics data are theoretically necessary and sufficient to uniquely determine the network interaction matrix and associated dynamics. Moreover, we show through numerical simulations that an interaction matrix can be accurately determined with three or more time-points even in the presence of sampling and measurement noise typical of single-cell omics. Our results can guide the design of single-cell omics time-course experiments, and provide a tool for data-driven phase-space analysis.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Single-cell trajectories reconstruction, exploration and mapping of omics data with STREAM
    Huidong Chen
    Luca Albergante
    Jonathan Y. Hsu
    Caleb A. Lareau
    Giosuè Lo Bosco
    Jihong Guan
    Shuigeng Zhou
    Alexander N. Gorban
    Daniel E. Bauer
    Martin J. Aryee
    David M. Langenau
    Andrei Zinovyev
    Jason D. Buenrostro
    Guo-Cheng Yuan
    Luca Pinello
    Nature Communications, 10
  • [32] Unsupervised manifold alignment for single-cell multi-omics data
    Singh, Ritambhara
    Demetci, Pinar
    Bonora, Giancarlo
    Ramani, Vijay
    Lee, Choli
    Fang, He
    Duan, Zhijun
    Deng, Xinxian
    Shendure, Jay
    Disteche, Christine
    Noble, William Stafford
    ACM-BCB 2020 - 11TH ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, 2020,
  • [33] Single-cell spatial (scs) omics: Recent developments in data analysis
    Camacho, Jose
    Armstrong, Michael Sorochan
    Garcia-Martinez, Luz
    Diaz, Caridad
    Gomez-Llorente, Carolina
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2025, 183
  • [34] Spatial integration of multi-omics single-cell data with SIMO
    Yang, Penghui
    Jin, Kaiyu
    Yao, Yue
    Jin, Lijun
    Shao, Xin
    Li, Chengyu
    Lu, Xiaoyan
    Fan, Xiaohui
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [35] Generalized and scalable trajectory inference in single-cell omics data with VIA
    Stassen, Shobana, V
    Yip, Gwinky G. K.
    Wong, Kenneth K. Y.
    Ho, Joshua W. K.
    Tsia, Kevin K.
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [36] SMILE: mutual information learning for integration of single-cell omics data
    Xu, Yang
    Das, Priyojit
    McCord, Rachel Patton
    BIOINFORMATICS, 2022, 38 (02) : 476 - 486
  • [37] Metagenomics and Single-Cell Omics Data Analysis for Human Microbiome Research
    Han, Maozhen
    Yang, Pengshuo
    Zhou, Hao
    Li, Hongjun
    Ning, Kang
    TRANSLATIONAL BIOMEDICAL INFORMATICS: A PRECISION MEDICINE PERSPECTIVE, 2016, 939 : 117 - 137
  • [38] DISCO: a database of Deeply Integrated human Single-Cell Omics data
    Li, Mengwei
    Zhang, Xiaomeng
    Ang, Kok Siong
    Ling, Jingjing
    Sethi, Raman
    Lee, Nicole Yee Shin
    Ginhoux, Florent
    Chen, Jinmiao
    NUCLEIC ACIDS RESEARCH, 2022, 50 (D1) : D596 - D602
  • [39] Multi-omics integration in the age of million single-cell data
    Miao, Zhen
    Humphreys, Benjamin D.
    McMahon, Andrew P.
    Kim, Junhyong
    NATURE REVIEWS NEPHROLOGY, 2021, 17 (11) : 710 - 724
  • [40] Visual cohort comparison for spatial single-cell omics-data
    Somarakis, Antonios
    Ijsselsteijn, Marieke E.
    Luk, Sietse J.
    Kenkhuis, Boyd
    de Miranda, Noel F. C. C.
    Lelieveldt, Boudewijn P. F.
    Hollt, Thomas
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2021, 27 (02) : 733 - 743