Recovering biomolecular network dynamics from single-cell omics data requires three time points

被引:0
|
作者
Wang, Shu [1 ,2 ,3 ]
Al-Radhawi, Muhammad Ali [4 ,5 ]
Lauffenburger, Douglas A. [3 ]
Sontag, Eduardo D. [4 ,5 ]
机构
[1] Univ Toronto, Donnelly Ctr, Toronto, ON, Canada
[2] Univ Toronto, Mol Genet, Toronto, ON, Canada
[3] MIT, Dept Biol Engn, Cambridge, MA 02139 USA
[4] Northeastern Univ, Dept Bioengn & Engn, Boston, MA 02115 USA
[5] Northeastern Univ, Dept Comp Engn, Boston, MA 02115 USA
关键词
D O I
10.1038/s41540-024-00424-7
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Single-cell omics technologies can measure millions of cells for up to thousands of biomolecular features, enabling data-driven studies of complex biological networks. However, these high-throughput experimental techniques often cannot track individual cells over time, thus complicating the understanding of dynamics such as time trajectories of cell states. These "dynamical phenotypes" are key to understanding biological phenomena such as differentiation fates. We show by mathematical analysis that, in spite of high dimensionality and lack of individual cell traces, three time-points of single-cell omics data are theoretically necessary and sufficient to uniquely determine the network interaction matrix and associated dynamics. Moreover, we show through numerical simulations that an interaction matrix can be accurately determined with three or more time-points even in the presence of sampling and measurement noise typical of single-cell omics. Our results can guide the design of single-cell omics time-course experiments, and provide a tool for data-driven phase-space analysis.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Interpreting single-cell and spatial omics data using deep neural network training dynamics
    Karin, Jonathan
    Mintz, Reshef
    Raveh, Barak
    Nitzan, Mor
    NATURE COMPUTATIONAL SCIENCE, 2024, 4 (12): : 941 - 954
  • [2] Network modeling of single-cell omics data: challenges, opportunities, and progresses
    Blencowe, Montgomery
    Arneson, Douglas
    Ding, Jessica
    Chen, Yen-Wei
    Saleem, Zara
    Yang, Xia
    EMERGING TOPICS IN LIFE SCIENCES, 2019, 3 (04) : 379 - 398
  • [4] Recovering Gene Interactions from Single-Cell Data Using Data Diffusion
    van Dijk, David
    Sharma, Roshan
    Nainys, Juozas
    Yim, Kristina
    Kathail, Pooja
    Carr, Ambrose J.
    Burdziak, Cassandra
    Moon, Kevin R.
    Chaffer, Christine L.
    Pattabiraman, Diwakar
    Bierie, Brian
    Mazutis, Linas
    Wolf, Guy
    Krishnaswamy, Smita
    Pe'er, Dana
    CELL, 2018, 174 (03) : 716 - +
  • [5] EMBEDR: Distinguishing signal from noise in single-cell omics data
    Johnson, Eric M.
    Kath, William
    Mani, Madhav
    PATTERNS, 2022, 3 (03):
  • [6] Mapping gene regulatory networks from single-cell omics data
    Fiers, Mark W. E. J.
    Minnoye, Liesbeth
    Aibar, Sara
    Gonzalez-Blas, Carmen Bravo
    Atak, Zeynep Kalender
    Aerts, Stein
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2018, 17 (04) : 246 - 254
  • [7] Recent advances in trajectory inference from single-cell omics data
    Deconinck, Louise
    Cannoodt, Robrecht
    Saelens, Wouter
    Deplancke, Bart
    Saeys, Yvan
    CURRENT OPINION IN SYSTEMS BIOLOGY, 2021, 27
  • [8] Clustering single-cell multimodal omics data with jrSiCKLSNMF
    Ellis, Dorothy
    Roy, Arkaprava
    Datta, Susmita
    FRONTIERS IN GENETICS, 2023, 14
  • [9] A Python library for probabilistic analysis of single-cell omics data
    Adam Gayoso
    Romain Lopez
    Galen Xing
    Pierre Boyeau
    Valeh Valiollah Pour Amiri
    Justin Hong
    Katherine Wu
    Michael Jayasuriya
    Edouard Mehlman
    Maxime Langevin
    Yining Liu
    Jules Samaran
    Gabriel Misrachi
    Achille Nazaret
    Oscar Clivio
    Chenling Xu
    Tal Ashuach
    Mariano Gabitto
    Mohammad Lotfollahi
    Valentine Svensson
    Eduardo da Veiga Beltrame
    Vitalii Kleshchevnikov
    Carlos Talavera-López
    Lior Pachter
    Fabian J. Theis
    Aaron Streets
    Michael I. Jordan
    Jeffrey Regier
    Nir Yosef
    Nature Biotechnology, 2022, 40 : 163 - 166
  • [10] Computational Methods for Single-Cell Imaging and Omics Data Integration
    Watson, Ebony Rose
    Taherian Fard, Atefeh
    Mar, Jessica Cara
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2022, 8