DATASET AND IMPROVED YOLOV7 FOR TEXT-BASED TRAFFIC SIGN DETECTION

被引:0
|
作者
Chi, Xiuyuan [1 ]
Huang, He [1 ]
Yang, Junxing [1 ]
Zhao, Junxian [1 ]
Zhang, Xin [1 ]
机构
[1] Beijing Univ Civil Engn & Architecture, Sch Geomat & Urban Spatial Informat, Beijing, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
CTTSD; Improved YOLOv7; BiFormer; Prune; Traffic sign; Detection; RECOGNITION; INTELLIGENT;
D O I
10.5194/isprs-archives-XLVIII-1-W2-2023-881-2023
中图分类号
K85 [文物考古];
学科分类号
0601 ;
摘要
Traffic sign detection is an important part of autonomous driving technology, and it is also important to have a large-scale dataset applicable to Chinese traffic scenarios. The article proposes a text-based self-labelled traffic sign dataset which consists of 3153 images, of which 2903 images are used for training and 250 images are used for validation. And an improved YOLOv7 algorithm is provided that incorporates the BiFormer attention mechanism into the YOLOv7 network to enhance its ability to detect small objects. This approach has the advantage of improved accuracy but may increase runtime. To mitigate this problem, the improved YOLOv7 network undergoes model pruning to compress the model size and increase its speed. Experimental results show that the improved YOLOv7 network in this paper improves the average accuracy by 2.9% while maintaining almost the same speed as the original network. After testing, the model has a real-time effect and practical significance. In conclusion, the text-based self-annotated dataset and the improved YOLOv7 network proposed in this paper have important reference values for text-based traffic sign recognition in automatic driving assistance systems.
引用
收藏
页码:881 / 888
页数:8
相关论文
共 50 条
  • [31] Characteristic Elements Detection of Tangka Based on Improved YOLOv7
    Li, Guomin
    Shi, Wei
    PROCEEDINGS OF 2024 INTERNATIONAL CONFERENCE ON COMPUTER AND MULTIMEDIA TECHNOLOGY, ICCMT 2024, 2024, : 388 - 394
  • [32] PBA-YOLOv7: An Object Detection Method Based on an Improved YOLOv7 Network
    Sun, Yang
    Li, Yi
    Li, Song
    Duan, Zehao
    Ning, Haonan
    Zhang, Yuhang
    APPLIED SCIENCES-BASEL, 2023, 13 (18):
  • [33] Improved Cherry Detection Method at Night Based on YOLOv7: YOLOv7-Cherry
    Gai, Rongli
    Kong, Xiangzhou
    Qin, Shan
    Wei, Kai
    Computer Engineering and Applications, 2024, 60 (21) : 315 - 323
  • [34] YOLOv7-SN: Underwater Target Detection Algorithm Based on Improved YOLOv7
    Zhao, Ming
    Zhou, Huibo
    Li, Xue
    SYMMETRY-BASEL, 2024, 16 (05):
  • [35] Cascaded Segmentation-Detection Networks for Text-Based Traffic Sign Detection
    Zhu, Yingying
    Liao, Minghui
    Yang, Mingkun
    Liu, Wenyu
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2018, 19 (01) : 209 - 219
  • [36] MCA-YOLOv7: An Improved UAV Target Detection Algorithm Based on YOLOv7
    Qin, Zhiyong
    Chen, Dike
    Wang, Hongyuan
    IEEE ACCESS, 2024, 12 : 42642 - 42650
  • [37] YOLOv7-PSAFP: Crop pest and disease detection based on improved YOLOv7
    Du, Lujia
    Zhu, Junlong
    Liu, Muhua
    Wang, Lin
    IET IMAGE PROCESSING, 2025, 19 (01)
  • [38] Traffic Sign Detection Based on Improved YOLOv5
    Zhou, Hua-Ping
    Xu, Chen-Chen
    Sun, Ke-Lei
    Journal of Computers (Taiwan), 2023, 34 (03) : 63 - 73
  • [39] YOLOv7-SiamFF: Industrial defect detection algorithm based on improved YOLOv7
    Yi, Feifan
    Zhang, Haigang
    Yang, Jinfeng
    He, Liming
    Mohamed, Ahmad Sufril Azlan
    Gao, Shan
    COMPUTERS & ELECTRICAL ENGINEERING, 2024, 114
  • [40] Traffic Sign Detection Based on the Improved YOLOv5
    Zhang, Rongyun
    Zheng, Kunming
    Shi, Peicheng
    Mei, Ye
    Li, Haoran
    Qiu, Tian
    APPLIED SCIENCES-BASEL, 2023, 13 (17):