Data-driven prediction on critical mechanical properties of engineered cementitious composites based on machine learning

被引:7
|
作者
Qing, Shuangquan [1 ]
Li, Chuanxi [1 ,2 ]
机构
[1] Changsha Univ Sci & Technol, Dept Civil Engn, Changsha 410114, Peoples R China
[2] State Key Lab Featured Met Mat & Life Cycle Safety, Nanning 530004, Peoples R China
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Engineered cementitious composites; Machine learning; Mechanical properties; Random forest; XGBoost; STRAIN-HARDENING BEHAVIOR; HIGH-STRENGTH; MULTIPLE CRACKING; BOND BEHAVIOR; PERFORMANCE; STEEL; PVA; ECC; POLYETHYLENE; SHRINKAGE;
D O I
10.1038/s41598-024-66123-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The present study introduces a novel approach utilizing machine learning techniques to predict the crucial mechanical properties of engineered cementitious composites (ECCs), spanning from typical to exceptionally high strength levels. These properties, including compressive strength, flexural strength, tensile strength, and tensile strain capacity, can not only be predicted but also precisely estimated. The investigation encompassed a meticulous compilation and examination of 1532 datasets sourced from pertinent research. Four machine learning algorithms, linear regression (LR), K nearest neighbors (KNN), random forest (RF), and extreme gradient boosting (XGB), were used to establish the prediction model of ECC mechanical properties and determine the optimal model. The optimal model was utilized to employ SHapley Additive exPlanations (SHAP) for scrutinizing feature importance and conducting an in-depth parametric analysis. Subsequently, a comprehensive control strategy was devised for ECC mechanical properties. This strategy can provide actionable guidance for ECC design, equipping engineers and professionals in civil engineering and material science to make informed decisions throughout their design endeavors. The results show that the RF model demonstrated the highest prediction accuracy for compressive strength and flexural strength, with R2 values of 0.92 and 0.91 on the test set. The XGB model outperformed in predicting tensile strength and tensile strain capacity, with R2 values of 0.87 and 0.80 on the test set, respectively. The prediction of tensile strain capacity was the least accurate. Meanwhile, the MAE of the tensile strain capacity was a mere 0.84%, smaller than the variability (1.77%) of the test results in previous research. Compressive strength and tensile strength demonstrated high sensitivity to variations in both water-cement ratio (W) and water reducer (WR). In contrast, flexural strength exhibited high sensitivity solely to changes in W. Conversely, the sensitivity of tensile strain capacity to input features was moderate and consistent. The mechanical attributes of ECC emerged from the combined effects of multiple positive and negative features. Notably, WR exerted the most significant influence on compressive strength among all features, whereas polyethylene (PE) fiber emerged as the primary driver affecting flexural strength, tensile strength, and tensile strain capacity.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] Dirty engineering data-driven inverse prediction machine learning model
    Jin-Woong Lee
    Woon Bae Park
    Byung Do Lee
    Seonghwan Kim
    Nam Hoon Goo
    Kee-Sun Sohn
    Scientific Reports, 10
  • [32] Dirty engineering data-driven inverse prediction machine learning model
    Lee, Jin-Woong
    Park, Woon Bae
    Lee, Byung Do
    Kim, Seonghwan
    Goo, Nam Hoon
    Sohn, Kee-Sun
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [33] Machine Learning Models for Data-Driven Prediction of Diabetes by Lifestyle Type
    Qin, Yifan
    Wu, Jinlong
    Xiao, Wen
    Wang, Kun
    Huang, Anbing
    Liu, Bowen
    Yu, Jingxuan
    Li, Chuhao
    Yu, Fengyu
    Ren, Zhanbing
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2022, 19 (22)
  • [34] Prediction of dialysis adequacy using data-driven machine learning algorithms
    Liu, Yi-Chen
    Qing, Ji-Ping
    Li, Rong
    Chang, Juan
    Xu, Li-Xia
    RENAL FAILURE, 2024, 46 (02)
  • [35] Efficient Data-Driven Machine Learning Models for Water Quality Prediction
    Dritsas, Elias
    Trigka, Maria
    COMPUTATION, 2023, 11 (02)
  • [36] Data-Driven Machine-Learning Methods for Diabetes Risk Prediction
    Dritsas, Elias
    Trigka, Maria
    SENSORS, 2022, 22 (14)
  • [37] The Prediction of Flight Delay: Big Data-driven Machine Learning Approach
    Huo, Jiage
    Keung, K. L.
    Lee, C. K. M.
    Ng, Kam K. H.
    Li, K. C.
    2020 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT (IEEE IEEM), 2020, : 190 - 194
  • [38] Mechanical properties and tensile constitutive model of engineered cementitious composites based on geopolymer aggregates
    Su, Jun
    Zhong, Zilong
    Cai, Yaqiong
    Zheng, Wenjun
    Cai, Xinhua
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2024, 41 (11): : 6123 - 6138
  • [39] Machine learning prediction of mechanical properties of concrete: Critical review
    Ben Chaabene, Wassim
    Flah, Majdi
    Nehdi, Moncef L.
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 260
  • [40] Machine learning based pavement performance prediction for data-driven decision of asphalt pavement overlay
    Zhao, Jingnan
    Wang, Hao
    STRUCTURE AND INFRASTRUCTURE ENGINEERING, 2023,